leetcode-63. Unique Paths II · DP + vector

题面

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

Now consider if some obstacles are added to the grids. How many unique paths would there be?

leetcode-63. Unique Paths II · DP + vector_第1张图片

类似我们做过的62. Unique Paths,给定矩阵,其中0-无障碍物, 1-有障碍物(无法通过),找出到达右下角的不重复的路径数。

样例

1. Input:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

2. Input
[[0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0],[1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1],[0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],[0,0,0,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0],[1,0,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0],[0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0],[0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0],[1,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,1],[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0],[0,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,1],[1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,1],[0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,1,0,1],[1,1,1,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0]]
这个样例是做的过程中,遇到的一个棘手样例。int 会爆
Output : 1637984640

思路

我们采用和62. Unique Paths一样的思路,到达某点的路径数就是到达它的上边点和左边点路径数的和,只不过要注意的是,当有障碍物时,该点的路径数就要置0(无法到达该点)

算法(直接采用空间压缩DP算法)

时间复杂度:O(m*n)

空间复杂度:O(n)

1. 新建dp[n],预处理第一行(只能往右走,所以出现障碍物之后的点都无法到达置0, 之前的置1)

2. 遍历给定二位矩阵,第一列单独处理(没有左边的点),如果该点为1,即有障碍物,那么该点路径数置0;

3. 其他点正常处理,如果给定矩阵该点为1,即有障碍物,那么dp数组对应点置0;否则,该点路径加和左边点路径。

4. 返回dp末尾元素置。

源码

 1 class Solution {
 2 public:
 3     int uniquePathsWithObstacles(vectorint>>& obstacleGrid) {
 4         int row = obstacleGrid.size(), col = obstacleGrid[0].size();
 5         vectorint> dp(col, 0);//采用unsigned int 应对样例2的数据
 6         for(int i=0; i)//第一行预处理
 7         {
 8             if(obstacleGrid[0][i] == 1)
 9                 break;
10             dp[i] = 1;
11         }
12         for(int i=1; i)
13         {
14             if(obstacleGrid[i][0] == 1)//第一列特殊处理
15                 dp[0] = 0;
16             for(int j=1; j)//处理其他元素
17             {
18                 if(obstacleGrid[i][j] == 1)//遇到障碍物,无法通过置0
19                     dp[j] = 0;
20                 else
21                     dp[j] += dp[j-1];//可以通过,加和左边点路径。
22             }
23         }
24         return dp[col-1];
25     }
26 };

注意

 这里用了一维DP数组来做,用二维DP也可以,结果差不多。

二维DP源码

和一维大同小异

时间复杂度:O(m*n)

空间复杂度:O(m*n)

 1 class Solution {
 2 public:
 3     int uniquePathsWithObstacles(vectorint>>& obstacleGrid) {
 4         int row = obstacleGrid.size(), col = obstacleGrid[0].size();
 5         vectorint>> dp(row, vectorint>(col, 0));//二维vector你get了吗?
 6         for(int i=0; i)
 7         {
 8             if(obstacleGrid[0][i] == 1)
 9                 break;
10             dp[0][i] = 1;
11         }
12         for(int i=0; i)
13         {
14             if(obstacleGrid[i][0] == 1)
15                 break;
16             dp[i][0] = 1;
17         }
18         for(int i=1; i)
19         {
20             for(int j=1; j)
21             {
22                 if(obstacleGrid[i][j] == 1)
23                     dp[i][j] = 0;
24                 else
25                     dp[i][j] = dp[i][j-1] + dp[i-1][j];
26             }
27         }
28         return dp[row-1][col-1];
29     }
30 };

转载于:https://www.cnblogs.com/yocichen/p/10889599.html

你可能感兴趣的:(leetcode-63. Unique Paths II · DP + vector)