paddlepaddle-加载预训练模型

参考GitHub:

https://github.com/yangninghua/deeplearning_backbone

首先上官方例子

参考:

https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/image_classification/train.py

place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)

if checkpoint is not None:
    fluid.io.load_persistables(exe, checkpoint, main_program=train_prog)

add_arg('pretrained_model', str, None, "Whether to use pretrained model.")

pretrained_model = args.pretrained_model

if pretrained_model:
    def if_exist(var):
        return os.path.exists(os.path.join(pretrained_model, var.name))
    fluid.io.load_vars(exe, pretrained_model, main_program=train_prog, predicate=if_exist)

模型加载分成两种:

第一种是预训练模型

预训练的图像模式是可以借来使用的,即所谓迁移学习,将预训练模型的底层特征拿过来使用,接在新的图像模型结构上,对新的数据进行训练,这样就大大减少了训练数据量。

第二种是训练快照

if save_dirname is not None:
    fluid.io.save_inference_model(
        save_dirname, ["img"], [prediction],
        exe,
        model_filename=model_filename,
        params_filename=params_filename)

 

paddlepaddle最新的Fluid中,模型由一个或多个program来表示,program包含了block,block中包含了op和variable。在保存模型时,program–block–{op, variable}这一系列的拓扑结构会被保存成一个文件,variable具体的值会被保存在其他文件里。 

https://blog.csdn.net/baidu_40840693/article/details/93396495 

首先在上一个例子中的保存方式:

if save_dirname is not None:
    fluid.io.save_inference_model(
        save_dirname, ["img"], [prediction],
        exe,
        model_filename=model_filename,
        params_filename=params_filename)

paddlepaddle-加载预训练模型_第1张图片

https://github.com/PaddlePaddle/Paddle/issues/8973

paddlepaddle中调用fluid.io.save_inference_mode保存模型会保存模型的结构图,和模型Conv,BN,FC等层的权重

并不会保存快照,即

通过fluid.io.save_inference_mode 保存的模型,我们把它视为caffe、pytorch中的预训练模型

因为:

save_inference_model 存下来的,已经进行了图的剪枝,只能获取存储时设置的 fetch_list 中的变量,中间变量不可取

我们看一下这个函数干了什么:

def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
                         main_program=None,
                         model_filename=None,
                         params_filename=None,
                         export_for_deployment=True):
    """
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
        feeded_var_names(list[str]): Names of variables that need to be feeded data
                                     during inference.
        target_vars(list[Variable]): Variables from which we can get inference
                                     results.
        executor(Executor): The executor that saves the inference model.
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
                                    the default main program will be used.
                                    Default: None.
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
                                  `__model__` will be used.
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
                                   in separate files .
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.

    Returns:
        target_var_name_list(list): The fetch variables' name list

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[predict_var], executor=exe)

            # In this exsample, the function will prune the default main program
            # to make it suitable for infering the `predict_var`. The pruned
            # inference program is going to be saved in the "./infer_model/__model__"
            # and parameters are going to be saved in separate files under folder
            # "./infer_model".

    """
    if isinstance(feeded_var_names, six.string_types):
        feeded_var_names = [feeded_var_names]
    elif export_for_deployment:
        if len(feeded_var_names) > 0:
            # TODO(paddle-dev): polish these code blocks
            if not (bool(feeded_var_names) and all(
                    isinstance(name, six.string_types)
                    for name in feeded_var_names)):
                raise ValueError("'feed_var_names' should be a list of str.")

    if isinstance(target_vars, Variable):
        target_vars = [target_vars]
    elif export_for_deployment:
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
            raise ValueError("'target_vars' should be a list of Variable.")

    if main_program is None:
        main_program = default_main_program()
        if main_program._is_mem_optimized:
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)

    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
        for i, var in enumerate(target_vars):
            if isinstance(var, Variable):
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
        target_vars = uniq_target_vars
    target_var_name_list = [var.name for var in target_vars]

    # when a pserver and a trainer running on the same machine, mkdir may conflict
    try:
        os.makedirs(dirname)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
    model_basename = os.path.join(dirname, model_basename)

    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.

    origin_program = main_program.clone()

    if export_for_deployment:
        main_program = main_program.clone()
        global_block = main_program.global_block()
        need_to_remove_op_index = []
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

        main_program.desc.flush()

        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
        fetch_var_names = [v.name for v in target_vars]

        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())

    main_program._copy_dist_param_info_from(origin_program)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)

    save_persistables(executor, dirname, main_program, params_filename)
    return target_var_name_list

 

但是如果我们想保存快照呢,就是训练突然中断,下一次接着上一次的学习率,权重,loss,梯度等接着训练

这种情况就是我们前面说的第二种,训练快照

保存快照分为两步:

#1.保存program:
with open(filename, "wb") as f:
    f.write(program.desc.serialize_to_string())

#2.保存program中各个persistable的varibale的值:
fluid.io.save_persistables(executor, dirname, main_program)

那么同样的,加载快照,也分为两步:

#1.恢复program:
with open(filename, "rb") as f:
    program_desc_str = f.read()
program = Program.parse_from_string(program_desc_str)

#2.恢复persistable的variable:
fluid.io.load_persistables(executor, dirname, main_program)

paddlepaddle-加载预训练模型_第2张图片

paddlepaddle-加载预训练模型_第3张图片

我们进行测试

paddlepaddle-加载预训练模型_第4张图片

产生了两个文件:

paddlepaddle-加载预训练模型_第5张图片

resnet18_varibale中有300多项

paddlepaddle-加载预训练模型_第6张图片

 

你可能感兴趣的:(深度学习,paddlepaddle)