参考GitHub:
https://github.com/yangninghua/deeplearning_backbone
首先上官方例子
参考:
https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/image_classification/train.py
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
if checkpoint is not None:
fluid.io.load_persistables(exe, checkpoint, main_program=train_prog)
add_arg('pretrained_model', str, None, "Whether to use pretrained model.")
pretrained_model = args.pretrained_model
if pretrained_model:
def if_exist(var):
return os.path.exists(os.path.join(pretrained_model, var.name))
fluid.io.load_vars(exe, pretrained_model, main_program=train_prog, predicate=if_exist)
模型加载分成两种:
第一种是预训练模型
预训练的图像模式是可以借来使用的,即所谓迁移学习,将预训练模型的底层特征拿过来使用,接在新的图像模型结构上,对新的数据进行训练,这样就大大减少了训练数据量。
第二种是训练快照
if save_dirname is not None: fluid.io.save_inference_model( save_dirname, ["img"], [prediction], exe, model_filename=model_filename, params_filename=params_filename)
paddlepaddle最新的Fluid中,模型由一个或多个program来表示,program包含了block,block中包含了op和variable。在保存模型时,program–block–{op, variable}这一系列的拓扑结构会被保存成一个文件,variable具体的值会被保存在其他文件里。
https://blog.csdn.net/baidu_40840693/article/details/93396495
首先在上一个例子中的保存方式:
if save_dirname is not None:
fluid.io.save_inference_model(
save_dirname, ["img"], [prediction],
exe,
model_filename=model_filename,
params_filename=params_filename)
https://github.com/PaddlePaddle/Paddle/issues/8973
paddlepaddle中调用fluid.io.save_inference_mode保存模型会保存模型的结构图,和模型Conv,BN,FC等层的权重
并不会保存快照,即
通过fluid.io.save_inference_mode 保存的模型,我们把它视为caffe、pytorch中的预训练模型
因为:
save_inference_model 存下来的,已经进行了图的剪枝,只能获取存储时设置的 fetch_list 中的变量,中间变量不可取
我们看一下这个函数干了什么:
def save_inference_model(dirname,
feeded_var_names,
target_vars,
executor,
main_program=None,
model_filename=None,
params_filename=None,
export_for_deployment=True):
"""
Prune the given `main_program` to build a new program especially for inference,
and then save it and all related parameters to given `dirname` by the `executor`.
Args:
dirname(str): The directory path to save the inference model.
feeded_var_names(list[str]): Names of variables that need to be feeded data
during inference.
target_vars(list[Variable]): Variables from which we can get inference
results.
executor(Executor): The executor that saves the inference model.
main_program(Program|None): The original program, which will be pruned to
build the inference model. If is setted None,
the default main program will be used.
Default: None.
model_filename(str|None): The name of file to save the inference program
itself. If is setted None, a default filename
`__model__` will be used.
params_filename(str|None): The name of file to save all related parameters.
If it is setted None, parameters will be saved
in separate files .
export_for_deployment(bool): If True, programs are modified to only support
direct inference deployment. Otherwise,
more information will be stored for flexible
optimization and re-training. Currently, only
True is supported.
Returns:
target_var_name_list(list): The fetch variables' name list
Raises:
ValueError: If `feed_var_names` is not a list of basestring.
ValueError: If `target_vars` is not a list of Variable.
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
path = "./infer_model"
fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
target_vars=[predict_var], executor=exe)
# In this exsample, the function will prune the default main program
# to make it suitable for infering the `predict_var`. The pruned
# inference program is going to be saved in the "./infer_model/__model__"
# and parameters are going to be saved in separate files under folder
# "./infer_model".
"""
if isinstance(feeded_var_names, six.string_types):
feeded_var_names = [feeded_var_names]
elif export_for_deployment:
if len(feeded_var_names) > 0:
# TODO(paddle-dev): polish these code blocks
if not (bool(feeded_var_names) and all(
isinstance(name, six.string_types)
for name in feeded_var_names)):
raise ValueError("'feed_var_names' should be a list of str.")
if isinstance(target_vars, Variable):
target_vars = [target_vars]
elif export_for_deployment:
if not (bool(target_vars) and
all(isinstance(var, Variable) for var in target_vars)):
raise ValueError("'target_vars' should be a list of Variable.")
if main_program is None:
main_program = default_main_program()
if main_program._is_mem_optimized:
warnings.warn(
"save_inference_model must put before you call memory_optimize. \
the memory_optimize will modify the original program, \
is not suitable for saving inference model \
we save the original program as inference model.",
RuntimeWarning)
# fix the bug that the activation op's output as target will be pruned.
# will affect the inference performance.
# TODO(Superjomn) add an IR pass to remove 1-scale op.
with program_guard(main_program):
uniq_target_vars = []
for i, var in enumerate(target_vars):
if isinstance(var, Variable):
var = layers.scale(
var, 1., name="save_infer_model/scale_{}".format(i))
uniq_target_vars.append(var)
target_vars = uniq_target_vars
target_var_name_list = [var.name for var in target_vars]
# when a pserver and a trainer running on the same machine, mkdir may conflict
try:
os.makedirs(dirname)
except OSError as e:
if e.errno != errno.EEXIST:
raise
if model_filename is not None:
model_basename = os.path.basename(model_filename)
else:
model_basename = "__model__"
model_basename = os.path.join(dirname, model_basename)
# When export_for_deployment is true, we modify the program online so that
# it can only be loaded for inference directly. If it's false, the whole
# original program and related meta are saved so that future usage can be
# more flexible.
origin_program = main_program.clone()
if export_for_deployment:
main_program = main_program.clone()
global_block = main_program.global_block()
need_to_remove_op_index = []
for i, op in enumerate(global_block.ops):
op.desc.set_is_target(False)
if op.type == "feed" or op.type == "fetch":
need_to_remove_op_index.append(i)
for index in need_to_remove_op_index[::-1]:
global_block._remove_op(index)
main_program.desc.flush()
main_program = main_program._prune(targets=target_vars)
main_program = main_program._inference_optimize(prune_read_op=True)
fetch_var_names = [v.name for v in target_vars]
prepend_feed_ops(main_program, feeded_var_names)
append_fetch_ops(main_program, fetch_var_names)
with open(model_basename, "wb") as f:
f.write(main_program.desc.serialize_to_string())
else:
# TODO(panyx0718): Save more information so that it can also be used
# for training and more flexible post-processing.
with open(model_basename + ".main_program", "wb") as f:
f.write(main_program.desc.serialize_to_string())
main_program._copy_dist_param_info_from(origin_program)
if params_filename is not None:
params_filename = os.path.basename(params_filename)
save_persistables(executor, dirname, main_program, params_filename)
return target_var_name_list
但是如果我们想保存快照呢,就是训练突然中断,下一次接着上一次的学习率,权重,loss,梯度等接着训练
这种情况就是我们前面说的第二种,训练快照
保存快照分为两步:
#1.保存program:
with open(filename, "wb") as f:
f.write(program.desc.serialize_to_string())
#2.保存program中各个persistable的varibale的值:
fluid.io.save_persistables(executor, dirname, main_program)
那么同样的,加载快照,也分为两步:
#1.恢复program:
with open(filename, "rb") as f:
program_desc_str = f.read()
program = Program.parse_from_string(program_desc_str)
#2.恢复persistable的variable:
fluid.io.load_persistables(executor, dirname, main_program)
我们进行测试
产生了两个文件:
resnet18_varibale中有300多项