TF-IDF算法解析与Python实现

TF-IDF(term frequency–inverse document frequency)是一种用于信息检索(information retrieval)与文本挖掘(text mining)的常用加权技术。比较容易理解的一个应用场景是当我们手头有一些文章时,我们希望计算机能够自动地进行关键词提取。而TF-IDF就是可以帮我们完成这项任务的一种统计方法。它能够用于评估一个词语对于一个文集或一个语料库中的其中一份文档的重要程度。

为了演示在Python中实现TF-IDF的方法,一些基于自然语言处理的预处理过程也会在本文中出现。如果你对NLTK和Scikit-Learn两个库还很陌生可以参考如下文章:

  • 利用NLTK在Python下进行自然语言处理
  • Python自然语言处理:词干、词形与MaxMatch算法

欢迎关注白马负金羁的博客 http://blog.csdn.net/baimafujinji ,为保证公式、图表得以正确显示,强烈建议你从该地址上查看原版博文。本博客主要关注方向包括:数字图像处理、算法设计与分析、数据结构、机器学习、数据挖掘、统计分析方法、自然语言处理。


必要的预处理过程

首先,我们给出需要引用的各种包,以及用作处理对象的三段文本。


import nltk
impor

你可能感兴趣的:(自然语言处理信息检索,TF-IDF,IR,Scikit,NLTK,python)