- 借助antd-design-x-vue实现接入通义千问大语言模型的对话功能(附源码)
说在前面现在大模型如此火热,想必你跟我也有同样的想法,实现一个自己的AI对话框,相比Dify等组件分享出来的对话框,自己实现起来可以更加灵活和适应需求。虽然Element,Antd都发布了各自的对话框组件,我说句实话,这个理解起来真没之前那种Button,Card这些组件来的简单,下面分享我的一个小Demo。功能拆解首先,官方帮我们实现了一个小的原型,附带了几乎所有的功能,地址如下:ant-des
- 多模态大语言模型arxiv论文略读(145)
胖头鱼爱算法
#mllm_arxiv语言模型人工智能自然语言处理论文笔记论文阅读
ReasoningLimitationsofMultimodalLargeLanguageModels.AcasestudyofBongardProblems➡️论文标题:ReasoningLimitationsofMultimodalLargeLanguageModels.AcasestudyofBongardProblems➡️论文作者:MikołajMałkiński,SzymonPawlo
- 多模态大语言模型arxiv论文略读(138)
胖头鱼爱算法
#mllm_arxiv语言模型人工智能自然语言处理论文笔记深度学习
UnderstandingtheRoleofLLMsinMultimodalEvaluationBenchmarks➡️论文标题:UnderstandingtheRoleofLLMsinMultimodalEvaluationBenchmarks➡️论文作者:BotianJiang,LeiLi,XiaonanLi,ZhaoweiLi,XiachongFeng,LingpengKong,QiLiu,
- 微调大语言模型后,如何评估效果?一文讲清
茫茫人海一粒沙
人工智能
在做大语言模型(LLM)微调时,“怎么判断模型调得好不好”是必须回答的问题。无论是在研究、项目落地,还是面试中,评估方法都不能停留在“训练loss降了”这么简单。本文从评估目标、技术指标、业务适配、实战建议四个维度,讲清楚微调后的模型评估怎么做,为什么这么做。一,评估前,先搞清楚目标不同的微调目的,评估方式也不同:✅精调任务能力:判断模型是否更好完成分类、问答、摘要、代码生成等任务。✅领域适应:关
- 多模态大语言模型arxiv论文略读(140)
SemiHVision:EnhancingMedicalMultimodalModelswithaSemi-HumanAnnotatedDatasetandFine-TunedInstructionGeneration➡️论文标题:SemiHVision:EnhancingMedicalMultimodalModelswithaSemi-HumanAnnotatedDatasetandFine-T
- 如何实现聊天模型响应流式处理
yunwu12777
langchain
在现代人工智能应用中,流式处理聊天模型的响应成为一种常见需求,特别是在需要实时输出或大规模处理时。本文将详细介绍如何在Python中实现聊天模型的同步和异步流式处理,使用langchain库中提供的ChatAnthropic模型作为示例。技术背景介绍流式处理是指从模型逐步获取输出,而不是等待整个输出完成。这对于处理长文本生成或需要动态响应的应用场景特别有用。langchain库中的聊天模型实现了R
- 本地运行大型语言模型(LLM)的实践指南
yunwu12777
语言模型人工智能自然语言处理
技术背景介绍近年来,项目如llama.cpp、Ollama、GPT4All等的流行标志着在本地设备上运行大型语言模型(LLM)的需求日益增长。选择在本地运行LLM,至少有两个重要的好处:隐私和成本。隐私上,数据不需要发送到第三方,避免了商业服务条款的限制;成本方面,无需支付推理费用,尤其是对于那些需要大量计算的应用,如长时间的模拟和总结。核心原理解析在本地运行LLM,需要准备以下几个条件:开源LL
- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- TVFEMD-CPO-TCN-BiLSTM多输入单输出模型
微光-沫年
matlab回归机器学习
47-TVFEMD-CPO-TCN-BiLSTM多输入单输出模型适合单变量,多变量时间序列预测模型(可改进,加入各种优化算法)时变滤波的经验模态分解TVFEMD时域卷积TCN双向长短期记忆网络BiLSTM时间序列预测模型另外以及有TCN-BILSTMTCN-LSTMTCN-BiLSTM-ATTENTION等!(此不包含在内,另算的!)Matlab代码!
- CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
Matlab科研辅导帮
cnngru人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍多变量时序预测在诸多领域扮演着至关重要的角色,例如金融、气象和工业控制等。近年来,深度学习方法在时序预测任务中取得了显著的进展。本文旨在系统地比较四种基于卷积神经网络(CNN)和循环神经网络(GRU)的不同架构,包
- 构建私有视觉搜索应用:多模态大模型的应用实例
2301_80727036
自然语言处理
在当今的科技时代,视觉搜索功能已经不再是新鲜事物,许多智能手机用户都可以通过自然语言搜索照片。随着开源多模态大型语言模型(Multi-modalLLMs)的兴起,我们现在可以为自己构建这种视觉搜索应用,用于管理自己的私人照片收藏。本教程将向您展示如何通过代码示例,使用开源多模态LLM构建私有视觉搜索和问答系统。技术背景介绍多模态大模型结合了文本和图像处理能力,使得我们可以开发更智能的应用程序。通过
- zookeeper Curator(5):集群架构和集群搭建
后会无期77
zookeeperCuratorzookeeper架构分布式
文章目录一、集群架构:Leader-Follower模式二、核心机制:ZAB协议三、Leader选举机制四、集群部署要点五、优势与挑战Zookeeper集群是一个由多个Zookeeper服务实例组成的分布式协调服务系统,通过奇数个节点(通常3、5、7个)的协作,提供高可用性、容错性和数据一致性,适用于分布式环境下的配置管理、命名服务、分布式锁等场景。以下从架构、核心机制、选举机制、数据模型、应用场
- AI人工智能助力空间智能领域提升运营效率
AI智能探索者
AIAgent智能体开发实战人工智能网络ai
AI人工智能助力空间智能领域提升运营效率关键词:AI人工智能、空间智能领域、运营效率、智能算法、数据驱动摘要:本文聚焦于AI人工智能在空间智能领域的应用,旨在探讨其如何助力该领域提升运营效率。首先介绍了空间智能领域的背景和相关概念,阐述了AI在其中的核心作用和原理。接着详细讲解了相关核心算法,并结合数学模型进行分析。通过项目实战案例展示了AI在空间智能领域的具体应用和实现方式。同时探讨了实际应用场
- DeepSeek:AI驱动的效率革命与实战案例解
weixin_45788582
人工智能aiDeepSeek
在人工智能技术的浪潮中,DeepSeek作为一款专注实现AGI(通用人工智能)的先锋工具,正通过其强大的自然语言处理(NLP)与分布式计算能力,重新定义高效办公的边界。以下通过技术解析与实战案例,展现DeepSeek如何赋能个人与企业,开启职场效率革命。一、技术革新:DeepSeek的核心竞争力深度学习赋能DeepSeek的技术架构基于BERT、Transformer等先进深度学习模型,通过构建复
- C++ string 类深度解析:字符串操作(拼接、查找、替换)
景彡先生
C++基础c++开发语言
在C++编程中,std::string是处理字符串的核心工具,它封装了动态字符串的内存管理,并提供了丰富的操作接口。本文将深入解析string类中最常用的字符串操作——拼接、查找、替换,通过原理分析和实战示例,帮助开发者高效掌握这些核心功能。一、string类基础:动态字符串的本质1.1核心特性动态内存管理:自动处理内存分配与释放,避免缓冲区溢出值语义:拷贝时复制内容,修改独立(区别于C风格字符数
- AI驱动的智能电网:平衡供需提高效率
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
智能电网,AI,机器学习,预测模型,优化算法,供需平衡,能源效率1.背景介绍随着全球能源需求的不断增长和可再生能源的快速发展,传统电网面临着越来越多的挑战。传统的电网结构是集中式供电,难以适应分布式能源的接入和负荷需求的波动性。智能电网应运而生,它利用先进的通信技术、传感器网络和数据分析技术,实现电网的自动化、智能化和可视化,从而提高电网的可靠性、效率和安全性。人工智能(AI)作为一种新兴技术,在
- [插电式混合动力车辆][交替方向乘子法(ADMM)结合CVX]插电式混合动力车辆的能源管理:基于凸优化算法用于模型预测控制MPC研究(Matlab代码实现)
程序辅导帮
算法matlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码、数据、文章⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时
- Java进阶学习
m0_67403013
面试学习路线阿里巴巴android前端后端
进阶学习过程的几个方面第一阶段的学习是java基础的学习和javaEE的学习。第二阶段就是java学习的进阶啦。主要是面试书籍,下面是书籍推荐:多线程、并发实战java高并发程序设计和java并发编程的艺术:——“java高并发程序设计”,这本书主要是为了看第二本书做铺垫,直接看第二本书可能会很吃力。实战java高并发程序设计主要看:前4章、5.1、5.2、5.3、5.10、5.11和第6章。——
- Redis集群全流程实战指南
代码中の快捷键
javaredis
Redis集群全流程实战指南:从零搭建到生产优化1.开篇:理解Redis集群的核心价值Redis作为高性能内存数据库,在单机模式下存在三大瓶颈:容量限制:受单机内存大小制约性能瓶颈:单节点QPS上限可用性风险:单点故障问题Redis集群通过分布式架构完美解决这些问题,本文将带您完成从理论认知到生产部署的全流程实践。2.架构设计篇:深入Redis集群原理2.1数据分片机制哈希槽(HashSlot):
- 基于SpringBoot律师事务所案件管理系统的设计与实现
一点教程
Java项目springboot后端javaspring律师事务所案件管理系统
博主主页:一点教程博主简介:专注Java技术领域和毕业设计项目实战、Java微信小程序、安卓等技术开发,远程调试部署、代码讲解、文档指导、ppt制作等技术指导。主要内容:毕业设计,SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Python、Nodejs、小程序、安卓app、大数据等设计与开发感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以和博主沟通,希
- Python爬虫实战:使用Scrapy+Selenium+Playwright高效爬取Stack Overflow问答数据
Python爬虫项目
2025年爬虫实战项目python爬虫scrapy微信开发语言科技selenium
摘要本文将详细介绍如何使用Python生态中最先进的爬虫技术组合(Scrapy+Selenium+Playwright)来爬取StackOverflow的问答数据。我们将从基础爬虫原理讲起,逐步深入到分布式爬虫、反反爬策略、数据存储等高级话题,并提供完整的可运行代码示例。本文适合有一定Python基础,想要掌握专业级网络爬虫技术的开发者阅读。1.爬虫技术概述1.1为什么选择StackOverflo
- Python爬虫实战:使用Scrapy+Selenium+Playwright高效爬取Coursera课程信息
Python爬虫项目
2025年爬虫实战项目python爬虫scrapy微信开发语言科技selenium
前言在当今信息爆炸的时代,在线教育平台如Coursera提供了海量的高质量课程资源。对于学习者、教育研究者和数据分析师来说,获取这些平台的课程信息具有重要价值。本文将详细介绍如何使用Python爬虫技术高效爬取Coursera课程信息,并分析其中的技术难点与解决方案。1.Coursera网站分析Coursera是一个典型的现代Web应用,具有以下特点:采用React/Vue等前端框架构建,大量内容
- Python爬虫实战:借助工具高效采集微信公众号文章
Python爬虫项目
python爬虫微信facebook音视频开发语言
导语微信公众号作为信息传播的重要平台,涵盖了新闻、技术、生活等各个领域的优质内容。对于数据分析师、内容整理者或研究人员而言,系统地采集公众号文章内容具有重要意义。然而,微信公众号对爬虫设置了较强的反爬机制,直接采集存在一定难度。本文将结合实际案例,介绍如何借助工具和Python技术高效采集微信公众号文章。1.项目目标与需求定义目标:采集指定微信公众号的历史文章,包括标题、链接、发布时间等信息;支持
- 高效主机发现与端口枚举:fscan工具实战指南
Bruce_xiaowei
笔记总结经验网络安全fscan信息搜集
高效主机发现与端口枚举:fscan工具实战指南在网络安全领域,主机发现与端口枚举是渗透测试和信息收集的基础环节。本文将深入探讨fscan这一高效工具的核心技术原理与实战应用,帮助你快速掌握网络扫描的核心技能。一、fscan与Nmap工具对比特性fscanNmap开发语言Python3C++主要功能主机探测、端口扫描、漏洞检测主机发现、服务识别、OS检测爆破能力内置弱口令检测需配合其他工具扫描速度极
- 2025年上半年软考系统架构设计师--案例分析试题与答案
不对法
计算机软考机考系统架构
必选题一:大模型训练系统某公司开发一个在线大模型训练平台,支持Python代码编写、模型训练和部署,用户通过python编写模型代码,将代码交给系统进行模型代码的解析,最终由系统匹配相应的计算机资源进行输出,用户不需要关心底层硬件平台。a.系统发生错误时,不影响正常运行时发送一个消息给系统管理员(可靠性。ps:可靠性中包括了健壮性:指的是保护应用程序不受错误使用和错误输入的影响,在发生意外错误事件
- AI 技术&AI开发框架
34号树洞
人工智能深度学习人工智能机器学习NLPGAI
目录一、AI技术及其开发框架1.AI技术分类与代表方向2.主流AI开发框架3.AI应用开发流程简述4.补充:基础依赖与生态二、AI技术方向1.机器学习(MachineLearning,ML)✦核心概念:✦关键方法:✦应用案例:2.深度学习(DeepLearning,DL)✦核心概念:✦网络结构举例:✦技术趋势:3.自然语言处理(NLP)✦核心任务:✦代表模型:4.计算机视觉(ComputerVis
- Dify实现图文混排的智能问答实践
一望无际的大草原
Dify高级应用工作总结Agent数据分析agent智能客服
最近在做类似于各大平台中广泛应用的智能客服,相当于基于各平台的用户操作手册,业务流程场景等文档资料,开发一个类似于智能客服的自动化问答应用。主要基于dify进行开发,但对数据有些特殊要求,之前大家做的都是基于文本的,结合大模型返回的结果主要也是文本信息,这种方式不够直观全面,也有信息丢失,同时,一般这些资料中都包含了大量的图文结合内容,很多问题的答复需要结合图像进行答复更加直观,因此对其进行简单的
- 服务器、树莓派/香橙派部署HomeAssistant与小爱音箱联动
不对法
物联网物联网
HomeAssistant功能介绍与多平台部署实战:CentOS服务器、树莓派、香橙派部署及小爱音箱联动控制一、HomeAssistant简介HomeAssistant是一款基于Python开发的开源智能家居自动化平台,它最大的特点是高度集成和自定义。通过HomeAssistant,用户可以将不同品牌、不同协议的智能家居设备(如空调、电灯、传感器等)整合到一个统一的平台进行管理和控制,同时还支持通
- Qt 各种功能学习笔记
栈不收
qt学习笔记
目录1.Qt关于数据库1.1Qt链接数据库1.2将数据库的模型显示在控件中2.Qt关于控件2.1用正则表达式设置输入框只能输入正浮点数2.2设置QDateTimeEdit的时间格式和设置为当前时间1.Qt关于数据库1.1Qt链接数据库基础教学:使用Qt链接MySql数据库_qt连接mysql_栈不收的博客-CSDN博客需要注意的问题:在链接MySQL的时候,首先要确保MySQL已经安装成功在目录Q
- 机器学习算法——神经网络1(神经元模型)
神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。神经网络中最基本的成分是神经元(neuron)模型。即上述定义中的“简单单元”。在生物神经网络中,每个神经元与其他申请元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =