分布式系统核心—日志

    分布式系统的核心组件:日志。有时也叫write-ahead logs 、commit logs 或者事物 logs, 通常指在应用所有的修改之前先写入日志,一般会将重放日志、撤销日志都写进去。

    NoSQL数据库、KV存储、Hadoop、raft、paxos 以及版本控制等等,这些中间件或者协议本质上都或多或少依赖于日志,可以发现日志一直都在分布式系统中扮演者非常重要的角色。

    什么是日志?

    日志就是按照时间顺序追加的、完全有序的记录序列,其实就是一种特殊的文件格式,文件是一个字节数组,而这里日志是一个记录数据,只是相对于文件来说,这里每条记录都是按照时间的相对顺序排列的,可以说日志是最简单的一种存储模型,

读取一般都是从左到右,例如消息队列,一般是线性写入log文件,消费者顺序从offset开始读取。  

     ​由于日志本身固有的特性,记录从左向右开始顺序插入,也就意味着左边的记录相较于右边的记录“更老”, 也就是说我们可以不用依赖于系统时钟,这个特性对于分布式系统来说相当重要。

                                                  分布式系统核心—日志_第1张图片                                         

      分布式系统中可横向扩展是一个相当重要的特性,加机器能解决的问题都不是问题。那么如何实现一个能够实现横向扩展的消息队列呢? 加入我们有一个单机的消息队列,随着topic数目的上升,IO、CPU、带宽等都会逐渐成为瓶颈,性能会慢慢下降,那么这里如何进行性能优化呢?

       ​1. topic/日志分片,本质上topic写入的消息就是日志的记录,那么随着写入的数量越多,单机会慢慢的成为瓶颈,这个时候我们可以将单个topic分为多个子topic,并将每个topic分配到不同的机器上,通过这种方式,对于那些消息量极大的topic就可以通过加机器解决,而对于一些消息量较少的可以分到到同一台机器或不进行分区。

       ​2. group commit,例如Kafka的producer客户端,写入消息的时候,是先写入一个本地内存队列,然后将消息按照每个分区、节点汇总,进行批量提交,对于服务器端或者broker端,也可以利用这种方式,先写入pagecache,再定时刷盘,刷盘的方式可以根据业务决定,例如金融业务可能会采取同步刷盘的方式。

      ​3. 规避无用的数据拷贝。

      ​4. IO隔离

                                  分布式系统核心—日志_第2张图片                                            

你可能感兴趣的:(分布式与大数据系统,分布式一致性,分布式日志系统)