容器”这两个字很少被Python 技术文章提起。一看到“容器”,大家想到的多是那头蓝色小鲸鱼:Docker,但这篇文章和它没有任何关系。本文里的容器,是Python 中的一个抽象概念,是对专门用来装其他对象的数据类型的统称。
在Python 中,有四类最常见的内建容器类型:列表(list)、元组(tuple)、字典(dict)、集合(set)。通过单独或是组合使用它们,可以高效的完成很多事情。
Python 语言自身的内部实现细节也与这些容器类型息息相关。比如Python 的类实例属性、全局变量 globals() 等就都是通过字典类型来存储的。
在这篇文章里,我首先会从容器类型的定义出发,尝试总结出一些日常编码的最佳实践。之后再围绕各个容器类型提供的特殊机能,分享一些编程的小技巧。
内容目录
当我们谈论容器时,我们在谈些什么?
我在前面给了“容器”一个简单的定义:专门用来装其他对象的就是容器。但这个定义太宽泛了,无法对我们的日常编程产生什么指导价值。要真正掌握Python 里的容器,需要分别从两个层面入手:
下面,让我们一起站在这两个不同的层面上,重新认识容器。
底层看容器
Python 是一门高级编程语言,它所提供的内置容器类型,都是经过高度封装和抽象后的结果。和“链表”、“红黑树”、“哈希表”这些名字相比,所有Python 内建类型的名字,都只描述了这个类型的功能特点,其他人完全没法只通过这些名字了解它们的哪怕一丁点内部细节。
这是Python 编程语言的优势之一。相比C 语言这类更接近计算机底层的编程语言,Python 重新设计并实现了对编程者更友好的内置容器类型,屏蔽掉了内存管理等额外工作。为我们提供了更好的开发体验。
但如果这是Python 语言的优势的话,为什么我们还要费劲去了解容器类型的实现细节呢?答案是:关注细节可以帮助我们编写出更快的代码。
写更快的代码
1. 避免频繁扩充列表/创建新列表
所有的内建容器类型都不限制容量。如果你愿意,你可以把递增的数字不断塞进一个空列表,最终撑爆整台机器的内存。
在Python 语言的实现细节里,列表的内存是按需分配的[注1],当某个列表当前拥有的内存不够时,便会触发内存扩容逻辑。而分配内存是一项昂贵的操作。虽然大部分情况下,它不会对你的程序性能产生什么严重的影响。但是当你处理的数据量特别大时,很容易因为内存分配拖累整个程序的性能。
还好,Python 早就意识到了这个问题,并提供了官方的问题解决指引,那就是:“变懒”。
如何解释“变懒”?range() 函数的进化是一个非常好的例子。
在Python 2 中,如果你调用 range(100000000),需要等待好几秒才能拿到结果,因为它需要返回一个巨大的列表,花费了非常多的时间在内存分配与计算上。但在Python 3 中,同样的调用马上就能拿到结果。因为函数返回的不再是列表,而是一个类型为 range 的懒惰对象,只有在你迭代它、或是对它进行切片时,它才会返回真正的数字给你。
所以说,为了提高性能,内建函数 range “变懒”了。 而为了避免过于频繁的内存分配,在日常编码中,我们的函数同样也需要变懒,这包括:
2. 在列表头部操作多的场景使用deque 模块
列表是基于数组结构(Array)实现的,当你在列表的头部插入新成员(list.insert(0, item))时,它后面的所有其他成员都需要被移动,操作的时间复杂度是 O(n)。这导致在列表的头部插入成员远比在尾部追加(list.append(item) 时间复杂度为 O(1))要慢。
如果你的代码需要执行很多次这类操作,请考虑使用 collections.deque 类型来替代列表。因为deque 是基于双端队列实现的,无论是在头部还是尾部追加元素,时间复杂度都是 O(1)。
3. 使用集合/字典来判断成员是否存在
当你需要判断成员是否存在于某个容器时,用集合比列表更合适。因为 item in [...] 操作的时间复杂度是 O(n),而 item in {...} 的时间复杂度是 O(1)。这是因为字典与集合都是基于哈希表(Hash Table)数据结构实现的。
# 这个例子不是特别恰当,因为当目标集合特别小时,使用集合还是列表对效率的影响微乎其微
# 但这不是重点:)
VALID_NAMES=["piglei", "raymond", "bojack", "caroline"]
# 转换为集合类型专门用于成员判断
VALID_NAMES_SET=set(VALID_NAMES)
defvalidate_name(name):
ifname notinVALID_NAMES_SET:
# 此处使用了Python 3.6 添加的f-strings 特性
raiseValueError(f"{name}is not a valid name!")
Hint: 强烈建议阅读 TimeComplexity - Python Wiki,了解更多关于常见容器类型的时间复杂度相关内容。
如果你对字典的实现细节感兴趣,也强烈建议观看Raymond Hettinger 的演讲 Modern Dictionaries(YouTube)
高层看容器
Python 是一门“鸭子类型”语言:“当看到一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟就可以被称为鸭子。” 所以,当我们说某个对象是什么类型时,在根本上其实指的是: 这个对象满足了该类型的特定接口规范,可以被当成这个类型来使用。 而对于所有内置容器类型来说,同样如此。
打开位于 collections 模块下的 abc(“抽象类Abstract Base Classes”的首字母缩写) 子模块,可以找到所有与容器相关的接口(抽象类)[注2]定义。让我们分别看看那些内建容器类型都满足了什么接口:
每个内置容器类型,其实就是满足了多个接口定义的组合实体。比如所有的容器类型都满足 “可被迭代的”(Iterable)这个接口,这意味着它们都是“可被迭代”的。但是反过来,不是所有“可被迭代”的对象都是容器。就像字符串虽然可以被迭代,但我们通常不会把它当做“容器”来看待。
了解这个事实后,我们将在Python 里重新认识面向对象编程中最重要的原则之一:面向接口而非具体实现来编程。
让我们通过一个例子,看看如何理解Python 里的“面向接口编程”。
写扩展性更好的代码
某日,我们接到一个需求:有一个列表,里面装着很多用户评论,为了在页面正常展示,需要将所有超过一定长度的评论用省略号替代。
这个需求很好做,很快我们就写出了第一个版本的代码:
# 注:为了加强示例代码的说明性,本文中的部分代码片段使用了Python 3.5
# 版本添加的Type Hinting 特性
defadd_ellipsis(comments: typing.List[str], max_length: int=12):
"""如果评论列表里的内容超过max_length,剩下的字符用省略号代替
"""
index =0
forcomment incomments:
comment =comment.strip()
iflen(comment) >max_length:
comments[index] =comment[:max_length] +'...'
index +=1
returncomments
comments =[
"Implementation note",
"Changed",
"ABC for generator",
]
print("\n".join(add_ellipsis(comments)))
# OUTPUT:
# Implementati...
# Changed
# ABC for gene...
上面的代码里,add_ellipsis 函数接收一个列表作为参数,然后遍历它,替换掉需要修改的成员。这一切看上去很合理,因为我们接到的最原始需求就是:“有一个 列表,里面...”。但如果有一天,我们拿到的评论不再是被继续装在列表里,而是在不可变的元组里呢?
那样的话,现有的函数设计就会逼迫我们写出 add_ellipsis(list(comments)) 这种即慢又难看的代码了。?
面向容器接口编程
我们需要改进函数来避免这个问题。因为 add_ellipsis 函数强依赖了列表类型,所以当参数类型变为元组时,现在的函数就不再适用了*(原因:给 comments[index] 赋值的地方会抛出 TypeError 异常)。* 如何改善这部分的设计?秘诀就是:让函数依赖“可迭代对象”这个抽象概念,而非实体列表类型。
使用生成器特性,函数可以被改成这样:
defadd_ellipsis_gen(comments: typing.Iterable[str], max_length: int=12):
"""如果可迭代评论里的内容超过max_length,剩下的字符用省略号代替
"""
forcomment incomments:
comment =comment.strip()
iflen(comment) >max_length:
yieldcomment[:max_length] +'...'
else:
yieldcomment
print("\n".join(add_ellipsis_gen(comments)))
在新函数里,我们将依赖的参数类型从列表改成了可迭代的抽象类。这样做有很多好处,一个最明显的就是:无论评论是来自列表、元组或是某个文件,新函数都可以轻松满足:
# 处理放在元组里的评论
comments =("Implementation note", "Changed", "ABC for generator")
print("\n".join(add_ellipsis_gen(comments)))
# 处理放在文件里的评论
withopen("comments") asfp:
forcomment inadd_ellipsis_gen(fp):
print(comment)
将依赖由某个具体的容器类型改为抽象接口后,函数的适用面变得更广了。除此之外,新函数在执行效率等方面也都更有优势。现在让我们再回到之前的问题。从高层来看,什么定义了容器?
答案是: 各个容器类型实现的接口协议定义了容器。 不同的容器类型在我们的眼里,应该是 是否可以迭代、是否可以修改、有没有长度 等各种特性的组合。我们需要在编写相关代码时,更多的关注容器的抽象属性,而非容器类型本身,这样可以帮助我们写出更优雅、扩展性更好的代码。
Hint:在 itertools 内置模块里可以找到更多关于处理可迭代对象的宝藏。
常用技巧
1. 使用元组改善分支代码
有时,我们的代码里会出现超过三个分支的 if/else 。就像下面这样:
importtime
deffrom_now(ts):
"""接收一个过去的时间戳,返回距离当前时间的相对时间文字描述
"""
now =time.time()
seconds_delta =int(now -ts)
ifseconds_delta <1:
return"less than 1 second ago"
elifseconds_delta <60:
return"{}seconds ago".format(seconds_delta)
elifseconds_delta <3600:
return"{}minutes ago".format(seconds_delta//60)
elifseconds_delta <3600*24:
return"{}hours ago".format(seconds_delta //3600)
else:
return"{}days ago".format(seconds_delta //(3600*24))
now =time.time()
print(from_now(now))
print(from_now(now -24))
print(from_now(now -600))
print(from_now(now -7500))
print(from_now(now -87500))
# OUTPUT:
# less than 1 second ago
# 24 seconds ago
# 10 minutes ago
# 2 hours ago
# 1 days ago
上面这个函数挑不出太多毛病,很多很多人都会写出类似的代码。但是,如果你仔细观察它,可以在分支代码部分找到一些明显的“边界”。比如,当函数判断某个时间是否应该用“秒数”展示时,用到了 60。而判断是否应该用分钟时,用到了 3600。
从边界提炼规律是优化这段代码的关键。 如果我们将所有的这些边界放在一个有序元组中,然后配合二分查找模块 bisect。整个函数的控制流就能被大大简化:
importbisect
# BREAKPOINTS 必须是已经排好序的,不然无法进行二分查找
BREAKPOINTS=(1, 60, 3600, 3600*24)
TMPLS=(
# unit, template
(1, "less than 1 second ago"),
(1, "{units}seconds ago"),
(60, "{units}minutes ago"),
(3600, "{units}hours ago"),
(3600*24, "{units}days ago"),
)
deffrom_now(ts):
"""接收一个过去的时间戳,返回距离当前时间的相对时间文字描述
"""
seconds_delta =int(time.time() -ts)
unit, tmpl =TMPLS[bisect.bisect(BREAKPOINTS, seconds_delta)]
returntmpl.format(units=seconds_delta //unit)
除了用元组可以优化过多的 if/else 分支外,有些情况下字典也能被用来做同样的事情。关键在于从现有代码找到重复的逻辑与规律,并多多尝试。
2. 在更多地方使用动态解包
动态解包操作是指使用 * 或 ** 运算符将可迭代对象“解开”的行为,在Python 2 时代,这个操作只能被用在函数参数部分,并且对出现顺序和数量都有非常严格的要求,使用场景非常单一。
defcalc(a, b, multiplier=1):
return(a +b) *multiplier
# Python2 中只支持在函数参数部分进行动态解包
printcalc(*[1, 2], **{"multiplier": 10})
# OUTPUT: 30
不过,Python 3 尤其是3.5 版本后,* 和 ** 的使用场景被大大扩充了。举个例子,在Python 2 中,如果我们需要合并两个字典,需要这么做:
defmerge_dict(d1, d2):
# 因为字典是可被修改的对象,为了避免修改原对象,此处需要复制一个d1 的浅拷贝
result =d1.copy()
result.update(d2)
returnresult
user =merge_dict({"name": "piglei"}, {"movies": ["Fight Club"]})
但是在Python 3.5 以后的版本,你可以直接用 ** 运算符来快速完成字典的合并操作:
user = {**{"name": "piglei"}, **{"movies": ["Fight Club"]}}
除此之外,你还可以在普通赋值语句中使用 * 运算符来动态的解包可迭代对象。如果你想详细了解相关内容,可以阅读下面推荐的PEP。
Hint:推进动态解包场景扩充的两个PEP:
3. 最好不用“获取许可”,也无需“要求原谅”
这个小标题可能会稍微让人有点懵,让我来简短的解释一下:“获取许可”与“要求原谅”是两种不同的编程风格。如果用一个经典的需求:“计算列表内各个元素出现的次数” 来作为例子,两种不同风格的代码会是这样:
# AF: Ask for Forgiveness
# 要做就做,如果抛出异常了,再处理异常
defcounter_af(l):
result ={}
forkey inl:
try:
result[key] +=1
exceptKeyError:
result[key] =1
returnresult
# AP: Ask for Permission
# 做之前,先问问能不能做,可以做再做
defcounter_ap(l):
result ={}
forkey inl:
ifkey inresult:
result[key] +=1
else:
result[key] =1
returnresult
整个Python 社区对第一种 Ask for Forgiveness 的异常捕获式编程风格有着明显的偏爱。这其中有很多原因,首先,在Python 中抛出异常是一个很轻量的操作。其次,第一种做法在性能上也要优于第二种,因为它不用在每次循环的时候都做一次额外的成员检查。
不过,示例里的两段代码在现实世界中都非常少见。为什么?因为如果你想统计次数的话,直接用 collections.defaultdict 就可以了:
fromcollections importdefaultdict
defcounter_by_collections(l):
result =defaultdict(int)
forkey inl:
result[key] +=1
returnresult
这样的代码既不用“获取许可”,也无需“请求原谅”。 整个代码的控制流变得更清晰自然了。 所以,如果可能的话,请尽量想办法省略掉那些 非核心 的异常捕获逻辑。一些小提示:
4. 使用next() 函数
next() 是一个非常实用的内建函数,它接收一个迭代器作为参数,然后返回该迭代器的下一个元素。使用它配合生成器表达式,可以高效的实现*“从列表中查找第一个满足条件的成员”* 之类的需求。
numbers =[3, 7, 8, 2, 21]
# 获取并**立即返回** 列表里的第一个偶数
print(next(i fori innumbers ifi %2==0))
# OUTPUT: 8
5. 使用有序字典来去重
字典和集合的结构特点保证了它们的成员不会重复,所以它们经常被用来去重。但是,使用它们俩去重后的结果会丢失原有列表的顺序。这是由底层数据结构“哈希表(Hash Table)”的特点决定的。
>>>l =[10, 2, 3, 21, 10, 3]
# 去重但是丢失了顺序
>>>set(l)
{3, 10, 2, 21}
如果既需要去重又必须保留顺序怎么办?我们可以使用 collections.OrderedDict 模块:
>>>fromcollections importOrderedDict
>>>list(OrderedDict.fromkeys(l).keys())
[10, 2, 3, 21]
Hint: 在Python 3.6 中,默认的字典类型修改了实现方式,已经变成有序的了。并且在Python 3.7 中,该功能已经从 语言的实现细节 变成了为 可依赖的正式语言特性。
但是我觉得让整个Python 社区习惯这一点还需要一些时间,毕竟目前“字典是无序的”还是被印在无数本Python 书上。所以,我仍然建议在一切需要有序字典的地方使用OrderedDict。
常见误区
1. 当心那些已经枯竭的迭代器
在文章前面,我们提到了使用“懒惰”生成器的种种好处。但是,所有事物都有它的两面性。生成器的最大的缺点之一就是:它会枯竭。当你完整遍历过它们后,之后的重复遍历就不能拿到任何新内容了。
numbers =[1, 2, 3]
numbers =(i *2fori innumbers)
# 第一次循环会输出2, 4, 6
fornumber innumbers:
print(number)
# 这次循环什么都不会输出,因为迭代器已经枯竭了
fornumber innumbers:
print(number)
而且不光是生成器表达式,Python 3 里的map、filter 内建函数也都有一样的特点。忽视这个特点很容易导致代码中出现一些难以察觉的Bug。
Instagram 就在项目从Python 2 到Python 3 的迁移过程中碰到了这个问题。它们在PyCon 2017 上分享了对付这个问题的故事。访问文章 Instagram 在PyCon 2017 的演讲摘要,搜索“迭代器”可以查看详细内容。
2. 别在循环体内修改被迭代对象
这是一个很多Python 初学者会犯的错误。比如,我们需要一个函数来删掉列表里的所有偶数:
defremove_even(numbers):
"""去掉列表里所有的偶数
"""
fori, number inenumerate(numbers):
ifnumber %2==0:
# 有问题的代码
delnumbers[i]
numbers =[1, 2, 7, 4, 8, 11]
remove_even(numbers)
print(numbers)
# OUTPUT: [1, 7, 8, 11]
注意到结果里那个多出来的“8” 了吗?当你在遍历一个列表的同时修改它,就会出现这样的事情。因为被迭代的对象 numbers 在循环过程中被修改了。遍历的下标在不断增长,而列表本身的长度同时又在不断缩减。这样就会导致列表里的一些成员其实根本就没有被遍历到。
所以对于这类操作,请使用一个新的空列表保存结果,或者利用 yield 返回一个生成器。而不是修改被迭代的列表或是字典对象本身。
总结
在这篇文章中,我们首先从“容器类型”的定义出发,在底层和高层两个层面探讨了容器类型。之后遵循系列文章传统,提供了一些编写容器相关代码时的技巧。
让我们最后再总结一下要点:
看完文章的你,有没有什么想吐槽的?请留言或者在 项目Github Issues 告诉我吧。
>>>下一篇【5.让函数返回结果的技巧】
<<<上一篇【3.编写条件分支代码的技巧】
系列其他文章
注解