- 基于大模型的短暂性脑缺血发作(TIA)全流程预测与诊疗辅助系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、系统核心目标二、系统架构模块三、实验验证证据链系统架构流程图关键技术创新点一、系统核心目标构建多模态数据融合的TIA预测-干预-管理闭环,覆盖术前预警、术中决策、术后康复全周期二、系统架构模块1.术前预测模块高危人群筛查模型输入:电子健康记录(EHR)、基因数据、可穿戴设备实时监测特征工程:血压波动模式、颈动脉斑块稳定性评分TIA发作概率预测72小时预警模型(LSTM+Transforme
- 解锁地图的更多可能:蜂鸟云数据融合功能正式上线!
蜂鸟视图fengmap
人工智能蜂鸟视图数据融合智能地图电子地图路径规划电子围栏
随着场景化业务的复杂程度日益增加,如何让地图数据更加智能化、动态化,是企业亟需解决的问题。蜂鸟视图蜂鸟云平台全新上线的数据融合功能,助力用户轻松实现地图与多来源数据的无缝结合,为企业打造真正“懂场景”的智能地图解决方案。一、蜂鸟云数据融合的核心亮点1.多源数据接入,轻松融合蜂鸟云支持多种数据来源的接入与管理,确保数据的实时性与灵活性:•静态文件数据:支持CSV、JSON等格式数据的上传与展示。•A
- 蜂鸟视图蜂鸟云平台更新概述:主题、制图、数据融合、云平台登录、服务接口及开发者中心
摘要蜂鸟云平台作为一个全面的地图与数据处理平台,提供了多个功能模块支持各种应用场景。本文详细介绍了蜂鸟云平台近期的更新,包括主题设计器、制图工具、数据融合模块、云平台登录优化、平台服务接口以及开发者中心的更新内容。通过对各项更新的分析,本文旨在展示这些改进如何提升系统的稳定性、性能以及用户体验,为开发者与用户提供更加便捷高效的解决方案。关键词蜂鸟云平台;主题设计器;制图工具;数据融合;用户体验;平
- Kaggle金牌方案复现:CGO-Transformer-GRU多模态融合预测实战
1背景分析在2023年Kaggle"GlobalMultimodalDemandForecastingChallenge"竞赛中,CGO-Transformer-GRU方案以领先第二名1.8个百分点的绝对优势夺冠,创下该赛事三年来的最佳成绩。本方案创新性地融合了协方差引导优化(CGO)、注意力机制和时序建模三大技术模块,解决了多模态数据融合中的关键挑战:模态对齐、特征冲突和时序依赖建模。(1)多模
- Python 爬虫实战:英雄联盟赛事数据爬取(Scrapy+Playwright + 多源数据融合)
Python核芯
Python爬虫实战项目python爬虫scrapy
引言在电竞数据分析领域,英雄联盟(LeagueofLegends)赛事数据具有极高的商业价值。本文将通过一个完整的实战案例,演示如何使用Scrapy框架结合Playwright库,实现多源赛事数据的爬取与融合。项目涵盖动态渲染页面处理、分布式爬虫架构、数据清洗整合等核心技术点,最终构建一个可扩展的电竞数据采集平台。一、技术选型分析1.1为什么选择Scrapy+Playwright组合?Scrapy
- 【5G-A通感一体 】司法办案
flyair_China
5G
一、司法办案1.1、技术整合框架:构建司法智能办案引擎1.底层数据融合平台金税四期金融数据:整合企业/个人银行流水、税务申报、跨境支付记录,构建资金流向图谱,自动识别异常交易(如高频拆分转账、关联方循环交易)。5G-A通感一体技术:通过基站雷达信号感知目标位置、速度、轨迹(精度达米级),并与无人机、海岸监控设备联动,实现“空天地”一体化侦查。司法知识图谱:将法律条文、判例、证据规则结构化,支持自动
- DataPipeline与海量数据完成产品互认证,助推数据管理信创生态新进程
近日,DataPipeline与海量数据完成产品互认证工作。经过双方联合严格测试,DataPipeline企业级实时数据融合平台与海量数据库G100管理系统(以下简称:VastbaseG100)能够完全兼容,整体运行稳定高效,可为企业级客户提供可靠的中间件与数据库支撑。以此为基础,双方将共同助力更可靠的国产软件环境,帮助更多客户安全高效地进行信创实践及迁移,加速大中型企业数字化转型。产品兼容互认证
- 自动驾驶---感知模型之BEVFormer
智能汽车人
聊聊自动驾驶技术自动驾驶人工智能机器学习
1前言在自动驾驶领域,传统的感知方法通常基于图像或点云的局部视角,这会导致信息的遮挡和理解的局限性。而鸟瞰图(BEV)视角可以提供全局的场景信息,更适合于自动驾驶中的目标检测、轨迹预测等任务。然而,将不同视角的传感器数据转换到BEV空间并进行有效融合是一个挑战。BEVFormer的提出旨在解决这一问题,通过Transformer架构实现高效的多传感器数据融合和BEV特征表示学习。BEVFormer
- 深度学习多模态融合_3D目标检测多模态融合综述
MAGIC 95
深度学习多模态融合
0前言本篇文章主要想对目前处于探索阶段的3D目标检测中多模态融合的方法做一个简单的综述,主要内容为对目前几篇几篇研究工作的总结和对这个研究方面的一些思考。在前面的一些文章中,笔者已经介绍到了多模态融合的含义是将多种传感器数据融合。在3D目标检测中,目前大都是将lidar和image信息做融合。在上一篇文章中,笔者介绍到了目前主要的几种融合方法,即early-fusion,deep-fusion和l
- 关于电商商品API接口应用的发展趋势和应用
电商数据girl
电商项目API接口测试1688跨境寻源通API接口跨境电商API接口人工智能大数据产品经理jsonpythonoracle
商品API接口应用的未来发展趋势是什么?智能化与自动化深度用户分析:借助人工智能和机器学习技术,对用户行为、消费模式进行深度剖析,比如分析用户在不同场景下的购物偏好,实现超精准个性化推荐,甚至能预测用户的潜在需求,主动推送相关商品。流程自动化:订单处理、库存更新、客户咨询等业务流程,将通过智能算法和规则实现高度自动化,像库存达到下限自动补货下单,智能客服自动处理常见问题等。大数据融合全面数据洞察:
- 基于EKF的三自由度车辆定位算法解析与实践
南风寺山
本文还有配套的精品资源,点击获取简介:扩展卡尔曼滤波器(EKF)是处理非线性系统的有效算法,广泛应用于车辆定位、自动驾驶和机器人导航。本文档提供的源码针对车辆三自由度动态模型实现了EKF,通过传感器数据融合提高了车辆定位的精度。文档详细解析了EKF在车辆定位中的应用,从基础理论到算法流程,再到源码的具体实现,为开发者提供了深入学习EKF的机会,并展示了如何利用EKF实现精确的车辆定位。1.EKF基
- 【ROS2】tf2_ros:坐标变换、坐标系跟踪
郭老二
ROSROS2
【ROS】郭老二博文之:ROS目录1、简介在机器人导航中,tf2用于管理和转换机器人、传感器和环境之间的坐标系;在传感器数据融合中,它帮助同步和整合不同传感器的数据2、接口常用接口如下:1)tf2_ros::StaticTransformBroadcaster说明:用于广播静态坐标变换的类;方法:sendTransform(std::vector)用于发送一个静态的坐标变换的消息。参数:geome
- STM32无人机开发:从入门到精通
DS.Lang2i
stm32无人机嵌入式硬件
本教程将系统性地介绍如何从零开始使用STM32单片机开发四轴无人机,涵盖硬件选型、开发环境搭建、飞控系统设计、传感器集成、控制算法实现及实战优化等内容,结合理论知识与实践案例,帮助开发者逐步掌握无人机开发的核心技能。目录开发基础硬件选型与系统架构飞控系统开发传感器集成与数据融合实战测试与优化高级扩展与未来趋势一、开发基础1.1STM32单片机入门基本架构:STM32基于ARMCortex-M内核(
- 数据融合(Data Fusion)的概念与核心思想
Matlab建模攻城师
数据融合算法数据融合
1.定义与核心目标数据融合(DataFusion)是指通过整合多个来源的异构数据(如传感器、数据库、实时数据流等),生成更全面、准确且具有更高价值的信息表征的过程。其核心目标包括:提升信息质量:通过互补性和冗余性消除单一数据源的误差,增强结果的可靠性与精度。增强决策支持:为复杂场景(如战场评估、医疗诊断)提供多维度的综合分析,优化决策流程。实现“整体大于部分之和”:通过揭示数据间的隐含关联,发现单
- 植被监测新范式!Python驱动机器学习反演NDVI/LAI关键技术解析
梦想的初衷~
生态环境遥感植被python机器学习生态环境监测
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- craw4ai 抓取实时信息,与 mt4外行行情结合实时交易,基本面来觉得趋势方向,搞一个外汇交易策略
一刀到底211
python3craw4aimt4python人工智能
结合实时信息抓取、MT4行情数据、基本面分析的外汇交易策略框架,旨在通过多维度数据融合提升交易决策质量:行不行不知道先试试,理论是对的,只要基本面方向没错策略名称:Tri-Sync外汇交易系统核心理念「基本面定方向+技术面找点位+实时事件过滤」一、数据源整合基本面数据流抓取目标央行声明(Fed/ECB/BOJ官网)经济日历(非农、CPI、利率决议)地缘政治事件(Reuters/Bloomberg关
- 基于大模型的颅前窝底脑膜瘤预测与治疗技术方案
LCG元
大模型医疗研究-技术方向技术方案深度学习人工智能机器学习
目录技术方案概述一、核心算法实现1.多模态数据融合算法(伪代码)2.并发症风险预测模型(伪代码)二、系统模块流程图1.数据采集模块2.预测与决策模块三、系统集成方案1.系统集成流程图2.系统部署拓扑图四、关键技术验证1.模型性能对比表2.典型病例验证流程五、实施保障体系技术方案概述本方案基于深度学习大模型构建颅前窝底脑膜瘤全周期诊疗系统,包含术前精准预测、术中动态决策、术后康复管理三大模块。通过多
- 基于大模型的颅后窝脑膜瘤预测与干预技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习人工智能机器学习
目录技术方案大纲1.摘要2.引言3.技术方案设计3.1术前预测模块3.2术中辅助模块3.3麻醉方案优化3.4术后护理与并发症管理4.技术验证方法4.1数据来源4.2模型训练与测试4.3统计分析5.实验验证证据6.健康教育与指导7.讨论与结论流程图技术方案大纲1.摘要研究背景与目标核心技术(大模型算法、多模态数据融合)创新点(术前预测、术中决策、术后管理一体化)预期成果2.引言颅后窝脑膜瘤的临床特点
- ADAS感知系统硬件和解决方案供应商国外厂家介绍
A阿司匹林
ADAS自动驾驶人工智能自动驾驶机器学习
随着智能驾驶技术的不断进步,自动驾驶与高级驾驶辅助系统(ADAS)已经成为现代汽车发展的关键趋势。为了实现对周围环境的精准感知,ADAS系统依赖于各类硬件传感器,包括摄像头、雷达、激光雷达(LiDAR)、超声波传感器等。此外,ADAS的核心功能还依赖于多传感器数据融合、感知算法与高效的计算平台。因此,ADAS硬件与解决方案的供应商在整个智能驾驶生态系统中扮演着重要的角色。本文将深入探讨主要ADAS
- 基于MONAI框架的医学影像多模态融合与高级AI技术研究
LIUDAN'S WORLD
MONAI高级开发者研究教程专栏人工智能机器学习深度学习pytorch
摘要:随着人工智能(AI)在医疗健康领域的飞速发展,医学影像分析已成为推动精准医疗和临床决策的关键力量。MONAI(MedicalOpenNetworkforAI)作为一个专为医学影像设计的开源PyTorch框架,提供了从数据处理、模型训练到临床部署的全方位支持。本文旨在深入探讨基于MONAI框架的医学影像多模态融合策略及多种高级AI技术的原理与应用。我们将以实用教程的形式,对多模态数据融合(早期
- 数据如何驱动互联网一体化发展?
科技块儿
数据分析
在当今这个信息化、数字化高速发展的时代,互联网已经成为连接世界的桥梁,而数据则成为了这座桥梁上流淌的血液,滋养着互联网一体化的深入发展。数据不仅是信息的载体,更是驱动互联网一体化进程的关键力量。本文旨在探讨数据如何作为核心引擎,推动互联网在技术、应用、服务等多个层面实现更加紧密、高效的一体化。一、数据融合促进技术一体化大数据、云计算、人工智能等前沿技术的广泛应用,使得海量数据能够被快速收集、处理和
- 无人机电子防抖技术要点概述!
云卓SKYDROID
无人机云卓科技科普低空经济高科技
一、技术要点1.传感器数据融合电子防抖需结合陀螺仪、加速度计、视觉传感器等多源数据,实时检测无人机的姿态变化和振动频率。例如,IMU(惯性测量单元)通过加速度计和陀螺仪测量飞行器的姿态和运动状态,结合视觉感知系统的环境数据,为防抖算法提供输入。2.实时图像处理算法高频抖动修正:通过光流法分析相邻帧图像的运动偏移量,调整像素坐标以抵消高频抖动(如采用光流金字塔模型逐层匹配特征点)。低频抖动修正:利用
- 【数据集】高分辨率全球无缝地表温度数据集
WW、forever
数据集LST
目录数据概述-Aglobalseamless1kmresolutiondailylandsurfacetemperaturedataset(2003-2020)数据来源:数据融合方法:一、数据预处理(datapre-processing)二、时空拟合(spatiotemporalfitting)三、效率优化与边界处理四、填补精度评估(AccuracyAssessment)数据下载参考数据概述-Ag
- 输电线路微波覆冰监测系统原理与应用案例_电力防寒_智能监测
李子圆圆
人工智能
一、覆冰危害:电网冬季运行的隐形杀手冬季低温环境下,输电线路覆冰会导致导线重量激增,引发弧垂过大、杆塔倾斜甚至断线事故。据统计,我国每年因线路覆冰导致的停电事件占自然灾害类故障的30%以上,传统人工巡检受限于地形和天气,难以实现对偏远山区线路的实时监测。TLSK-PMG-FB200输电线路微波覆冰监测系统的出现,为解决这一难题提供了智能化方案。二、技术架构:多维度数据融合的监测体系(一)力学与视觉
- 软件工程课程设计---苍穹外卖
风中扉页
软件工程课程设计毕业设计
基于SpringBoot框架的外卖系统的设计与实现作者姓名:专业班级:指导教师:摘要随着计算机技术的高速发展,外卖系统管理方面从传统的纸质记录到计算机网络系统管理,管理与实时数据融合、业务全贯通、数字化管理成为现实。传统的外卖系统管理模式和应用、现代信息化建设的需求已经超越了服务系统的能力,因此我们需要开发一种更高效、更直观的现代管理技术来取代传统的管理方式。外卖系统管理系统是一种能够满足这一需求
- 基于YOLOv8的人行道障碍物智能检测系统
QQ_1309399183
计算机视觉实战项目集锦YOLO人行道检测盲道检测人行道障碍物检测障碍物检测
基于YOLOv8的人行道障碍物智能检测系统系统概述本系统采用先进的YOLOv8目标检测算法,专门针对城市人行道环境中的各类障碍物进行实时检测与识别。系统能够精准识别包括自行车、电动车、临时摊位、施工设施等常见人行道障碍物,为城市管理、无障碍通行和视觉辅助系统提供关键技术支持。核心技术创新多源数据融合训练本系统采用韩国提供的"인도보행영상"(人行道行走影像)数据集作为基础训练数据,该数据集包含约18
- 毫米波雷达标定过程记录
小山菌
传感器基本知识自动驾驶
前言实际工作过程中需要进行激光雷达和毫米波雷达的数据融合,需要进行毫米波雷达和激光雷达联合标定,因此查阅相关资料,手动写了一个简单版本的标定算法,这里对查找到的资料进行简单的梳理。1激光雷达和毫米波雷达测量精度激光雷达参数指标文档:毫米波雷达参数指标:官网总结:对于室外场景,考虑到实际角反的位置在20米内,还有毫米波雷达本身的测量误差正负10厘米,激光雷达的误差在正负1厘米,因此,采用激光雷达和角
- 基于大模型预测的脑出血全流程诊疗技术方案
LCG元
大模型医疗研究-技术方向机器学习深度学习人工智能算法
目录一、系统架构设计技术架构图二、核心算法实现1.多模态数据融合算法伪代码2.风险预测模型实现三、关键模块流程图1.术前风险预测流程图2.术中决策支持流程图3.并发症预测防控流程图四、系统集成方案1.数据接口规范五、性能优化策略1.推理加速方案2.分布式训练架构六、安全与合规数据隐私保护流程图七、部署方案1.边缘计算部署架构2.混合云部署方案八、验证与评估1.模型验证流程图2.临床效果评估指标体系
- 【自动驾驶云】高精度地图的分布式处理
沐风—云端行者
云计算架构自动驾驶分布式人工智能架构云计算
自动驾驶云:高精度地图的分布式处理一、技术背景及发展二、技术核心特点1.弹性计算架构2.分布式存储体系3.多源数据融合引擎三、关键技术细节1.流式数据处理管道2.高可用存储设计3.安全防护机制四、应用实践与未来发展1.标杆案例解析2.技术演进方向结语一、技术背景及发展随着自动驾驶技术的迭代,高精度地图已成为L4/L5级无人驾驶的“数字基座”。传统地图处理模式面临三大挑战:数据规模爆炸式增长:单辆自
- 泰迪杯特等奖案例学习资料:基于多模态数据融合与边缘计算的工业设备健康监测与预测性维护系统
学习的锅
边缘计算人工智能泰迪杯实战案例
(第十三届泰迪杯数据挖掘挑战赛特等奖案例解析)一、案例背景与核心挑战1.1应用场景与行业痛点在智能制造领域,工业设备(如数控机床、风力发电机)的健康状态直接影响生产效率和运维成本。传统维护方式存在以下问题:故障响应滞后:依赖定期检修,突发故障导致停机损失,平均每小时损失达10万元。数据异构性高:设备状态数据来源多样(振动、温度、电流等),采样频率差异大(1Hz~10kHz),融合困难。实时性要求苛
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C