公式为:(X-mean)/std 计算时对每个属性/每列分别进行。
将数据按期属性(按列进行)减去其均值,并处以其方差。得到的结果是,对于每个属性/每列来说所有数据都聚集在0附近,方差为1。
使用sklearn.preprocessing.scale()函数,可以直接将给定数据进行标准化。
>>> from sklearn
import
preprocessing
>>>
import
numpy
as
np
>>> X = np.array([[
1
., -
1
.,
2
.],
... [
2
.,
0
.,
0
.],
... [
0
.,
1
., -
1
.]])
>>> X_scaled = preprocessing.scale(X)
>>> X_scaled
array([[
0
. ..., -
1.22
...,
1.33
...],
[
1.22
...,
0
. ..., -
0.26
...],
[-
1.22
...,
1.22
..., -
1.06
...]])
>>>#处理后数据的均值和方差
>>> X_scaled.mean(axis=
0
)
array([
0
.,
0
.,
0
.])
>>> X_scaled.std(axis=
0
)
array([
1
.,
1
.,
1
.])
使用sklearn.preprocessing.StandardScaler类,使用该类的好处在于可以保存训练集中的参数(均值、方差)直接使用其对象转换测试集数据。
>>> scaler
=
preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy
=
True
, with_mean
=
True
, with_std
=
True
)
>>> scaler.mean_
array([
1.
...,
0.
...,
0.33
...])
>>> scaler.std_
array([
0.81
...,
0.81
...,
1.24
...])
>>> scaler.transform(X)
array([[
0.
...,
-
1.22
...,
1.33
...],
[
1.22
...,
0.
...,
-
0.26
...],
[
-
1.22
...,
1.22
...,
-
1.06
...]])
>>>
#可以直接使用训练集对测试集数据进行转换
>>> scaler.transform([[
-
1.
,
1.
,
0.
]])
array([[
-
2.44
...,
1.22
...,
-
0.26
...]])