复现经典:《统计学习方法》第 5 章 决策树

本文是李航老师的《统计学习方法》[1]一书的代码复现。

作者:黄海广[2]

备注:代码都可以在github[3]中下载。

我将陆续将代码发布在公众号“机器学习初学者”,敬请关注。

代码目录

  • 第 1 章 统计学习方法概论

  • 第 2 章 感知机

  • 第 3 章 k 近邻法

  • 第 4 章 朴素贝叶斯

  • 第 5 章 决策树

  • 第 6 章 逻辑斯谛回归

  • 第 7 章 支持向量机

  • 第 8 章 提升方法

  • 第 9 章 EM 算法及其推广

  • 第 10 章 隐马尔可夫模型

  • 第 11 章 条件随机场

  • 第 12 章 监督学习方法总结

代码参考:wzyonggege[4],WenDesi[5],火烫火烫的[6]

第 5 章 决策树

1.分类决策树模型是表示基于特征对实例进行分类的树形结构。决策树可以转换成一个if-then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布。

2.决策树学习旨在构建一个与训练数据拟合很好,并且复杂度小的决策树。因为从可能的决策树中直接选取最优决策树是 NP 完全问题。现实中采用启发式方法学习次优的决策树。

决策树学习算法包括 3 部分:特征选择、树的生成和树的剪枝。常用的算法有 ID3、 C4.5 和 CART。

3.特征选择的目的在于选取对训练数据能够分类的特征。特征选择的关键是其准则。常用的准则如下:

(1)样本集合 对特征 的信息增益(ID3)

其中, 是数据集 的熵, 是数据集 的熵, 是数据集 对特征 的条件熵。  中特征 取第 个值的样本子集, 中属于第 类的样本子集。 是特征 取 值的个数, 是类的个数。

(2)样本集合 对特征 的信息增益比(C4.5)

其中, 是信息增益, 是数据集 的熵。

(3)样本集合 的基尼指数(CART)

特征 条件下集合 的基尼指数:

4.决策树的生成。通常使用信息增益最大、信息增益比最大或基尼指数最小作为特征选择的准则。决策树的生成往往通过计算信息增益或其他指标,从根结点开始,递归地产生决策树。这相当于用信息增益或其他准则不断地选取局部最优的特征,或将训练集分割为能够基本正确分类的子集。

5.决策树的剪枝。由于生成的决策树存在过拟合问题,需要对它进行剪枝,以简化学到的决策树。决策树的剪枝,往往从已生成的树上剪掉一些叶结点或叶结点以上的子树,并将其父结点或根结点作为新的叶结点,从而简化生成的决策树。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline


from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math
from math import log
import pprint

书上题目 5.1

# 书上题目5.1
def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
               ['青年', '否', '否', '好', '否'],
               ['青年', '是', '否', '好', '是'],
               ['青年', '是', '是', '一般', '是'],
               ['青年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '好', '否'],
               ['中年', '是', '是', '好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '好', '是'],
               ['老年', '是', '否', '好', '是'],
               ['老年', '是', '否', '非常好', '是'],
               ['老年', '否', '否', '一般', '否'],
               ]
    labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
    # 返回数据集和每个维度的名称
    return datasets, labels
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
train_data

年龄 有工作 有自己的房子 信贷情况 类别
0 青年 一般
1 青年
2 青年
3 青年 一般
4 青年 一般
5 中年 一般
6 中年
7 中年
8 中年 非常好
9 中年 非常好
10 老年 非常好
11 老年
12 老年
13 老年 非常好
14 老年 一般
# 熵
def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([(p / data_length) * log(p / data_length, 2)
                for p in label_count.values()])
    return ent
# def entropy(y):
#     """
#     Entropy of a label sequence
#     """
#     hist = np.bincount(y)
#     ps = hist / np.sum(hist)
#     return -np.sum([p * np.log2(p) for p in ps if p > 0])




# 经验条件熵
def cond_ent(datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum(
        [(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
    return cond_ent




# 信息增益
def info_gain(ent, cond_ent):
    return ent - cond_ent




def info_gain_train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
#     ent = entropy(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
        best_feature.append((c, c_info_gain))
        print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
    # 比较大小
    best_ = max(best_feature, key=lambda x: x[-1])
    return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
info_gain_train(np.array(datasets))
特征(年龄) - info_gain - 0.083
特征(有工作) - info_gain - 0.324
特征(有自己的房子) - info_gain - 0.420
特征(信贷情况) - info_gain - 0.363






'特征(有自己的房子)的信息增益最大,选择为根节点特征'

利用 ID3 算法生成决策树,例 5.3

# 定义节点类 二叉树
class Node:
    def __init__(self, root=True, label=None, feature_name=None, feature=None):
        self.root = root
        self.label = label
        self.feature_name = feature_name
        self.feature = feature
        self.tree = {}
        self.result = {
            'label:': self.label,
            'feature': self.feature,
            'tree': self.tree
        }


    def __repr__(self):
        return '{}'.format(self.result)


    def add_node(self, val, node):
        self.tree[val] = node


    def predict(self, features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].predict(features)




class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}


    # 熵
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p / data_length) * log(p / data_length, 2)
                    for p in label_count.values()])
        return ent


    # 经验条件熵
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
                        for p in feature_sets.values()])
        return cond_ent


    # 信息增益
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent


    def info_gain_train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
        # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return best_


    def train(self, train_data):
        """
        input:数据集D(DataFrame格式),特征集A,阈值eta
        output:决策树T
        """
        _, y_train, features = train_data.iloc[:, :
                                               -1], train_data.iloc[:,
                                                                    -1], train_data.columns[:
                                                                                            -1]
        # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
        if len(y_train.value_counts()) == 1:
            return Node(root=True, label=y_train.iloc[0])


        # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
        if len(features) == 0:
            return Node(
                root=True,
                label=y_train.value_counts().sort_values(
                    ascending=False).index[0])


        # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
        max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
        max_feature_name = features[max_feature]


        # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
        if max_info_gain < self.epsilon:
            return Node(
                root=True,
                label=y_train.value_counts().sort_values(
                    ascending=False).index[0])


        # 5,构建Ag子集
        node_tree = Node(
            root=False, feature_name=max_feature_name, feature=max_feature)


        feature_list = train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_train_df = train_data.loc[train_data[max_feature_name] ==
                                          f].drop([max_feature_name], axis=1)


            # 6, 递归生成树
            sub_tree = self.train(sub_train_df)
            node_tree.add_node(f, sub_tree)


        # pprint.pprint(node_tree.tree)
        return node_tree


    def fit(self, train_data):
        self._tree = self.train(train_data)
        return self._tree


    def predict(self, X_test):
        return self._tree.predict(X_test)


datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)


tree


{'label:': None, 'feature': 2, 'tree': {'否': {'label:': None, 'feature': 1, 'tree': {'否': {'label:': '否', 'feature': None, 'tree': {}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}
dt.predict(['老年', '否', '否', '一般'])


'否'

scikit-learn 实例

# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = [
        'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
    ]
    data = np.array(df.iloc[:100, [0, 1, -1]])
    # print(data)
    return data[:, :2], data[:, -1]




X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)


from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
import graphviz


clf = DecisionTreeClassifier()
clf.fit(X_train, y_train,)


DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
            max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, presort=False, random_state=None,
            splitter='best')
clf.score(X_test, y_test)


0.9666666666666667
tree_pic = export_graphviz(clf, out_file="mytree.pdf")
with open('mytree.pdf') as f:
    dot_graph = f.read()


graphviz.Source(dot_graph)


复现经典:《统计学习方法》第 5 章 决策树_第1张图片

参考资料

[1] 《统计学习方法》: https://baike.baidu.com/item/统计学习方法/10430179
[2] 黄海广: https://github.com/fengdu78
[3] github: https://github.com/fengdu78/lihang-code
[4] wzyonggege: https://github.com/wzyonggege/statistical-learning-method
[5] WenDesi: https://github.com/WenDesi/lihang_book_algorithm
[6] 火烫火烫的: https://blog.csdn.net/tudaodiaozhale

关于本站

机器学习初学者公众号由是黄海广博士创建,黄博个人知乎粉丝23000+,github排名全球前100名(33000+)。本公众号致力于人工智能方向的科普性文章,为初学者提供学习路线和基础资料。原创作品有:吴恩达机器学习个人笔记、吴恩达深度学习笔记等。

往期精彩回顾

  • 那些年做的学术公益-你不是一个人在战斗

  • 适合初学者入门人工智能的路线及资料下载

  • 吴恩达机器学习课程笔记及资源(github标星12000+,提供百度云镜像)

  • 吴恩达深度学习笔记及视频等资源(github标星8500+,提供百度云镜像)

  • 《统计学习方法》的python代码实现(github标星7200+)

  • 机器学习的数学精华(在线阅读版)

备注:加入本站微信群或者qq群,请回复“加群

你可能感兴趣的:(复现经典:《统计学习方法》第 5 章 决策树)