动态规划——最少硬币找零问题(python)

1. 问题描述

动态规划——最少硬币找零问题(python)_第1张图片

2. 思路

刚开始是想利用贪心算法。假如要找的零钱总额为49元,先找10块的,可以找40块,再继续找5块的,可以找5块,再继续找2块的,可以找4块。找够49元的最少纸币数为4 + 1 + 2 = 7。但是有些情况可能不太行,例如:有纸币1元、3元、4元,要找6元的零钱,如果按照贪心算法的话,是找一张4元和两张1元,一共3张纸币。但是找6块钱的话,最少的方法应该是找两张3块。因此贪心算法在这里是失效的。
进一步,可以利用动态规划的算法来进行求解:

2.1 动态规划

动态规划——最少硬币找零问题(python)_第2张图片
动态规划——最少硬币找零问题(python)_第3张图片
通过这个递归公式我们可以进行填表。表格的初始化方式不太一样。我们以三种纸币1、3、4,找6块钱的零钱为例。由于表的第一行表示用面额为0的纸币找钱,那么找任意数量的钱,都需要无穷多的纸币,因此标的第一行初始化为python能够支持的最大数。第一列表示需要找0块钱(不需要找钱),用什么面额的钱找,都只需要0张,因此除了第一格,第一列统一初始化为0。表中的其他初始化为0。
动态规划——最少硬币找零问题(python)_第4张图片

2.2 python代码

import sys
max = sys.maxsize
def giveChange(coinList,totalCoin):
    result = [[0 for i in range(totalCoin + 1)] for j in range(len(coinList) + 1)]
    for j in range(totalCoin+1):
            result[0][j] = max
    for i in range(1,len(coinList)+1):
        for j in range(1,totalCoin + 1):
            if j >= coinList[i-1]:
                result[i][j] = min(result[i - 1][j], result[i][j - coinList[i - 1]]+1)
            else:
                result[i][j] = result[i-1][j]
    return result,result[i][j]
print(giveChange([1,3,4],6))
# 运行结果:
([[9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807], 
[0, 1, 2, 3, 4, 5, 6], 
[0, 1, 2, 1, 2, 3, 2], 
[0, 1, 2, 1, 1, 2, 2]],
 2)

最后找6块钱用的最少的纸币数是2张。

你可能感兴趣的:(算法)