tensorflow2.0处理图像数据

环境:tensorflow 2.0.0rc1
目的:处理图像数据,构建简单的分类器。
数据:root/train文件夹下有两个类别对应的图像文件夹,分别为antsbees
实现:

  • 通过tf.keras.preprocessing.image.ImageDataGenerator构建生成器
  • tf.data.Dataset
# -*- coding:utf-8 -*-
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
import os
import glob
import random
import pathlib


IMAGE_SHAPE = [300, 300]
root = r'D:\DataSet\hymenoptera_data'


class DataLoader():
    def __init__(self, root, batch_size=4):
        self.root = root
        self.batch_size = batch_size
        data_root = pathlib.Path(root)

        self.all_img_paths = list(data_root.glob('*/*.jpg'))
        self.all_img_paths = [str(path) for path in self.all_img_paths]
        random.shuffle(self.all_img_paths)

        self.label_names = sorted(item.name for item in data_root.glob(
            '*/') if item.is_dir())

        label_to_index = dict((name, index)
                              for index, name in enumerate(self.label_names))

        self.all_img_labels = [label_to_index[pathlib.Path(path).parent.name]
                               for path in self.all_img_paths]

    @staticmethod
    def preprocess_image(image):
        image = tf.image.decode_image(image, channels=3)
        image = tf.image.resize_with_crop_or_pad(image, 300, 300)
        image = tf.cast(image, tf.float64)
        image /= 255.0
        return image

    @staticmethod
    def load_and_preprocess_image(path):
        image = tf.io.read_file(path)
        return DataLoader.preprocess_image(image)

    def get_ds(self):
        path_ds = tf.data.Dataset.from_tensor_slices(self.all_img_paths)
        label_ds = tf.data.Dataset.from_tensor_slices(self.all_img_labels)
        image_ds = path_ds.map(self.load_and_preprocess_image)
        ds = tf.data.Dataset.zip((image_ds, label_ds))
        ds = ds.repeat().batch(self.batch_size)

        # def load_and_preprocess_from_path_label(path, label):
        #     return load_and_preprocess_image(path), label

        # ds = tf.data.Dataset.from_tensor_slices((all_img_paths, all_img_labels))
        # ds = ds.map(load_and_preprocess_from_path_label)
        return ds

    def show(self, ds, num=2):
        for data, label in ds.take(num):
            print(self.label_names[label.numpy()[0]])
            plt.imshow(data.numpy()[0, :, :, :])
            plt.show()

    def write_record(self, record_name):
        ds_image = tf.data.Dataset.from_tensor_slices(
            self.all_img_paths).map(tf.io.read_file)
        record = tf.data.experimental.TFRecordWriter(record_name)
        record.write(ds_image)
        print('record saved in {}'.format(record_name))

    def read_record(self, record_name):
        image_ds = tf.data.TFRecordDataset(
            record_name).map(self.preprocess_image)
        label_ds = tf.data.Dataset.from_tensor_slices(self.all_img_labels)
        ds = tf.data.Dataset.zip((image_ds, label_ds))
        ds = ds.repeat()
        # ds = ds.apply(tf.data.experimental.shuffle_and_repeat(
        #     buffer_size=10))
        ds = ds.batch(self.batch_size)

        return ds


def img_loader():
    img_generator = tf.keras.preprocessing.image.ImageDataGenerator(
        rescale=1/255)
    img_data = img_generator.flow_from_directory(os.path.join(root, 'train'),
                                                 target_size=IMAGE_SHAPE,
                                                 batch_size=2)
    val_data = img_generator.flow_from_directory(os.path.join(root, 'val'),
                                                 target_size=IMAGE_SHAPE,
                                                 batch_size=4)
    for data, label in img_data:
        print(data.shape)
        print(label.shape)
        break

    return img_data


def build_model():
    model = tf.keras.models.Sequential()
    model.add(layers.Conv2D(32, (3, 3), activation='relu',
                            input_shape=(300, 300, 3)))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu'))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu'))

    model.summary()

    model.add(layers.Flatten())
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(2, activation='softmax'))

    return model


def build_func_model():
    inputs = keras.Input(shape=(300, 300, 3), name='img')
    x = layers.Conv2D(32, (3, 3), activation='relu')(inputs)
    x = layers.MaxPooling2D((2, 2))(x)
    x = layers.Conv2D(64, (3, 3), activation='relu')(x)
    x = layers.MaxPooling2D((2, 2))(x)
    x = layers.Conv2D(64, (3, 3), activation='relu')(x)

    x = layers.Flatten()(x)
    x = layers.Dense(64, activation='relu')(x)
    outputs = layers.Dense(2, activation='softmax')(x)

    model = keras.Model(inputs=inputs, outputs=outputs, name='demo')

    return model


def resnet():
	# https://keras.io/zh/applications/
    base_model = keras.applications.resnet50.ResNet50(
        input_shape=(300, 300, 3), weights=None, include_top=False, classes=2)

    x = base_model.output
    x = keras.layers.GlobalAveragePooling2D()(x)

    outputs = keras.layers.Dense(2, activation='softmax')(x)
    model = keras.models.Model(inputs=base_model.input, outputs=outputs)

    return model


def train():
    # 使用keras的ImageDataGenerator读取数据
    model = build_model()
    model.compile(optimizer='adam',
                  loss='categorical_crossentropy',
                  metrics=[tf.keras.metrics.Accuracy()])
    model.fit_generator(img_loader(), epochs=2, steps_per_epoch=10)

    # 使用Dataset读取数据
    initial_learning_rate = 0.001
    lr_schedule = keras.optimizers.schedules.ExponentialDecay(initial_learning_rate,
                                                              decay_steps=10000,
                                                              decay_rate=0.96,
                                                              staircase=True)
    model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=lr_schedule),
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'],)

    tensorboard_cbk = keras.callbacks.TensorBoard(log_dir=r'F:\tmp')
    callbacks = [keras.callbacks.ModelCheckpoint(
        filepath='mymodel_{epoch}.h5'), tensorboard_cbk]

    dataloader = DataLoader(os.path.join(root, 'train'), batch_size=2)
    # dataloader.write_record('train.record')
    ds = dataloader.read_record('train.record')

    dataloader.show(ds)

    model.fit(ds, epochs=2, steps_per_epoch=10)

    # dataset
    ds = dataloader.get_ds()
    model.fit(ds, epochs=2, steps_per_epoch=10)


if __name__ == "__main__":
    train()

参考:TF2.0测试版

你可能感兴趣的:(tensorflow)