- 【概率论与数理统计】第三章 多维随机变量及其分布(3)
Arthur古德曼
概率论与数理统计概率论多维随机变量二维随机变量独立性概率分布夏明亮
2随机变量的独立性2.1两个随机变量的独立性在多维随机变量中各分量的取值有时会互相影响,但有时也会毫无影响。例如,一个人的身高XXX和体重YYY之间就会互相影响,但与收入ZZZ一般就没什么影响。这里,我们根据两个事件的独立性引出两个随机变量的独立性:之前我们这样描述:事件{X≤x}\{X\lex\}{X≤x}与事件{Y≤y}\{Y\ley\}{Y≤y}的积事件{X≤x,Y≤y}\{X\lex,\Y
- AI大模型副业变现之路,有技术就有收入!
AI大模型-王哥
人工智能AI大模型大模型大模型学习大模型教程大模型入门
在当今时代,AI大模型的应用越来越广泛,利用这些技术开展副业赚钱已成为可能。以下是一份详细的指南,帮助你了解需要学习的内容以及如何操作。一、需要学习的内容基础知识储备(1)数学知识:线性代数、概率论与数理统计、微积分等,这些是理解AI算法的基础。(2)编程技能:掌握Python编程语言,因为Python在AI领域有丰富的库和框架支持。(3)机器学习原理:了解常见的机器学习算法,如线性回归、决策树、
- 2019-03-20记录及学习计划更正
逆风飞翔的鸟
今天早晨早早的就坐上了返回学校的高铁,自己复习的进度稍慢了一些,不过没关系,这几天再追回来,最近发现虽然自己数学的做题能力有所提升,但是熟练程度还差很多,所以接下来高等数学要多做题,线性代数基础已经复习完毕,不能丢下,每天要做一定量的练习来保持住自己的水平。概率论与数理统计自己感觉有些困难,需要从课本开始认真的复习。关于英语我已经用百词斩背了有400左右的单词了,但是不是很扎实,所以自己要提升自己
- 【个人学习笔记】概率论与数理统计知识梳理【五】
已经是全速前进了
概率论
文章目录第五章、大数定律及中心极限定理一、大数定律1.1基本概念1.2弱大数定理二、中心极限定理独立同分布的中心极限定理定理总结第五章、大数定律及中心极限定理写博客比想象中费劲得多,公式得敲好久,所以只得随缘更更了,想写一些机器学习相关的东西,但是强迫症又不允许我把这个扔掉不管,我太难了Orz这一节的内容比较深,即使我是一个喜欢数学的工科生,也没有精力再去深究了,各式各样的大数定律及中心极限定理我
- 概率论与数理统计实验 附源码及实验报告 可打包为exe
货又星
概率论经验分享笔记python开源
Hi,I’m@货又星I’minterestedin…I’mcurrentlylearning…I’mlookingtocollaborateon…Howtoreachme…README目录(持续更新中)各种错误处理、爬虫实战及模板、百度智能云人脸识别、计算机视觉深度学习CNN图像识别与分类、PaddlePaddle自然语言处理知识图谱、GitHub、运维…WeChat:1297767084GitH
- 概率论与数理统计——二、随机变量及其分布
米妮爱分享
1随机变量随机变量是把样本S映射到R(实值单值)函数随机变量的引入可以来描述各种随机现象,并能利用数学分析的方法对随机实验的结果进行深入广泛的研究和讨论。2离散随机变量及其分布律(一)(0-1)分布(二)伯努力试验、二项分布(三)泊松分布3随机变量的分布函数计算分布函数时,根据其分布律,计算某一范围的概率时,左边x是小于不等于x的,当等于时,拆开的等式在3.1中还需要加上等于此值的概率,见例子。4
- 如何快速入门深度学习
人生万事须自为,跬步江山即寥廓。
机器学习人工智能chatgpt
深度学习是人工智能领域的一个重要分支,它模拟人脑的神经网络结构,通过大量的数据训练模型,使计算机能够自动学习和理解数据。深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。如果你想快速入门深度学习,可以按照以下步骤进行:1.学习基础知识在学习深度学习之前,你需要具备一定的数学基础,包括线性代数、概率论与数理统计、微积分等。此外,你还需要掌握一门编程语言,如Python,因为大多数深度
- 概率论与数理统计 第八章 假设检验
Jarkata
课前导读统计推断的另一类重要问题是假设检验问题。参数估计的主要任务是找参数值等于多少,或在哪个范围内取值。而假设检验则主要是看参数的值是否等于某个特定的值。通常进行假设检验即选定一个假设,确定用以决策的拒绝域的形式,构造一个检验统计量,求出拒绝域或检验统计量的p值,查看结果是否落在拒绝域内或p值是否小于显著性水平,做出决策的一个过程。第一节检验的基本原理举个例子,体现假设检验的思想:假设检验的统计
- 考研计划 东南大学
风与易水
考研学习
考研计划2021考研自用,目前已经上岸东南大学,祝各位顺利!数一:高数、线代、概率论与数理统计使用参考资料:1.《同济高数、浙大概率论与数理统计》2.《李永乐基础强化系列材料》3.武忠祥教学视频4.李林8805.武老师的高数辅导讲义+李永乐线代讲义5.李林的1086.《李林冲刺6套卷,李林预测4套卷》复习策略:1.2月初~6月底第一轮打基础,以武忠祥2020视频【教材(查阅相关知识点)】为主,深刻
- 武忠祥2025高等数学,基础阶段的百度网盘+视频及PDF
m0_54050778
pdf概率论
考研数学武忠祥基础主要学习以下几个方面的内容:1.微积分:主要包括极限、连续、导数、积分等概念,以及它们的基本性质和运算方法。2.线性代数:主要包括向量、向量空间、线性方程组、矩阵、行列式、特征值和特征向量等概念,以及它们的基本性质和运算方法。3概率论与数理统计:主要包括随机事件和概率、条件概率、独立性、随机变量及其分布、数学期望方差和协方差、大数定律和中心极限定理等概念以及它们的基本性质和运算方
- 大二下 课程安排
三冬四夏会不会有点漫长
#大二下计划
专业选修web前端开发信息与网络安全必修数据库原理4概率论与数理统计4软件设计与体系结构3编译技术3软件设计实践2大学体育1选修(待更新)目标大二下一定要好好学习,不然最后总的排名真的就垫底了,大一上绩点专业排名33/139,大一下绩点专业排名91/139,大二上待更新,整个大一绩点专业排名71/139,希望大二下能尽自己的全力学,绩点考到尽可能高,把自己不太行的过往的成绩往上拉一拉
- 不知道几天能学完《概率论与数理统计》之1.1随机统计
不安全的安保
不知道几天能学完概率论概率论
引言确定性(必然):一定发生/一定不发生随机性(偶然):可能发生/不发生统计规律:对事情做出大量重复性的实验试图找出某种规律1.1.1随机事件与随机试验试验:为了找出实践规律,对客观事物进行观察、测量,然后进行科学实验等等这类统称为试验随机试验:使用E表示三个要求相同条件下可以重复实验结果不止一个无法预测哪个结果会出现举个例子:抛硬币随机抛硬币可以出现两次正面硬币有正面和反面在硬币落地之前无法得知
- 2024年高校建设大数据实验室建设的意义
泰迪智能科技
大数据实验室大数据
数据挖掘与大数据分析是以计算机基础为基础,以挖掘算法为核心,紧密面向行业应用的一门综合性学科。其主要技术涉及概率论与数理统计、数据挖掘、算法与数据结构、计算机网络、并行计算等多个专业方向,因此该学科对于实验室具有较高的专业要求。实验室不仅要提供基础的开发环境,还要提供大数据的运算环境以及用于实验的实战大数据案例。这些实验素材的准备均需专业的大数据实验室作为支撑。目前,在我国高校的专业设置上与数据挖
- 概率论与数理统计————3.随机变量及其分布
辣个骑士
概率论与数理统计概率论
一、随机变量设E是一个随机试验,S为样本空间,样本空间的任意样本点e可以通过特定的对应法则X,使得每个样本点都有与之对应的数对应,则称X=X(e)为随机变量二、分布函数分布函数:设X为随机变量,x是任意实数,则事件{Xx}为随机变量X的分布函数,记为F(x)即:F(x)=P(Xx)(1)几何意义:(2)某点处的概率:P(a)=P(Xa)-P(X0;F(x)=cx0三、离散型随机变量及其分布离散型随
- 概率论与数理统计————古典概型、几何概型和条件概率
辣个骑士
概率论与数理统计概率论
一、古典概型特点(1)有限性:试验S的样本空间的有限集合(2)等可能性:每个样本点发生的概率是相等的公式:P(A)=A为随机事件的样本点数;S是样本空间二、几何概型计算公式:p(A)=A的长度、面积或体积S的长度、面积或体积三、条件概率条件概率:设A、B为两个事件,且p(B)>0,则在事件B条件下事件A发生的概率为P(A|B)=p(|A)=1-P(B|A)乘法公式:事件的独立性:若事件A、B满足P
- 概率论与数理统计————1.随机事件与概率
辣个骑士
概率论与数理统计概率论
一、随机事件随机试验:满足三个特点(1)可重复性:可在相同的条件下重复进行(2)可预知性:每次试验的可能不止一个,事先知道试验的所有可能结果(3)不确定性:每次试验不能确定实验结果随机试验记作E样本空间:随机试验E的所有可能的结果构成的集合样本点:样本空间的每个元素是一个样本点随机事件:样本空间的子集为一个随机事件(事件放生:该事件的某个样本点出现)必然事件:必然发生的事件不可能事件:不可能发生的
- 不动点迭代c语言for循环,概率论与数理统计-西北师范大学数学与统计学院.PDF
Jezzy WANG
不动点迭代c语言for循环
概率论与数理统计-西北师范大学数学与统计学院数学与统计学院数学与应用数学专业云亭班专业平台必修课程教学大纲数学与统计学院数学与应用数学专业云亭班专业平台必修课程包括以下11门课程:概率论与数理统计、实变函数、泛函分析、拓扑学、微分几何、C语言、近世代数、运筹学、常微分方程、复变函数、大学物理。概率论与数理统计一、说明课程性质:该课程是数学与应用数学专业云亭班专业平台必修课程之一,第5学期开设。周4
- 概率论与数理统计-第7章 假设检验
Ciian
概率论与数理统计概率论
假设检验的基本概念二、假设检验的基本思想假设检验的基本思想实质上是带有某种概率性质的反证法,为了检验一个假设H0,是否正确,首先假定该假设H0正确,然后根据抽取到的样本对假设H0作出接受或拒绝的决策,如果样本观察值导致了不合理的现象发生,就应拒绝假设H0,否则应接受假设H0·三、假设检验的两类错误第一类错误当假设H0正确时,小概率事件也有可能发生,此时,我们会拒绝假设H0,因而犯了“弃真”的错误,
- 概率论与数理统计系列笔记之第六章——参数估计
欧阳妙妙
概率论
概率论与数理统计笔记(第六章——参数估计)对于统计专业来说,书本知识总有遗忘,翻看教材又太麻烦,于是打算记下笔记与自己的一些思考,主要参考用书是茆诗松老师编写的《概率论与数理统计教程》,其他知识待后续书籍补充。文章目录概率论与数理统计笔记(第六章——参数估计)6.1点估计的概念以及无偏性6.1.1点估计及无偏性6.1.2有效性6.2矩估计以及相合性6.2.1替换原理和矩法估计6.2.2概率函数已知
- 【概率论与数理统计】第二章知识点复习与习题
小萨摩!
期末考试概率论
思维导图笔记一、随机变量定义:设随机试验的样本空间为S={e},X=X(e)是定义在样本空间S上的实值单值函数。称X=X(e)为随机变量。类似于函数、映射的概念。既然类似于函数,就有定义域和至于,通过定义知道,定义域为样本空间,值域为实数集。即对随机事件数量化。二、离散型随机变量及其分布律1离散型随机变量定义:全部可能取到的值是有限个或可列无限多个的随机变量。这里有限一定可列,可列不一定有限。而分
- 张宇1000题概率论与数理统计 第九章 参数估计与假设检验
古月忻
#概率论张宇考研其他
目录AAA组6.设x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn是来自总体X∼N(μ,σ2)X\simN(\mu,\sigma^2)X∼N(μ,σ2)(μ,σ2\mu,\sigma^2μ,σ2都未知)的简单随机样本的观测值,则σ2\sigma^2σ2的最大似然估计值为( )。(A)1n∑i=1n(xi−μ)2;(A)\cfrac{1}{n}\displaystyl
- 概率论与数理统计 Chapter4. 参数估计
Espresso Macchiato
基础数学概率论参数估计极大似然估计矩估计区间估计
概率论与数理统计Chapter4.参数估计1.基础概念1.总体2.样品3.统计量1.样本方差2.k阶原点矩3.k阶中心矩2.参数的点估计1.矩估计1.正态分布2.指数分布3.均匀分布4.二项分布5.泊松分布2.极大似然估计1.正态分布2.指数分布3.二项分布4.均匀分布5.泊松分布3.贝叶斯估计3.点估计的优良性准则1.无偏性1.均值2.方差3.标准差2.最小方差无偏估计3.相合性4.区间估计1.
- 概率论与数理统计浙大第五版 第七章 部分习题+R代码
⑨充满智慧与力量⑨
概率论
习题七1、μ1=E(X)=μ=1n∑i=1nxi=18(74.001+74.005+74.003+74.001+74.000+73.998+74.006+74.002)=74.002\mu_1=E(X)=\mu\\=\frac{1}{n}\sum_{i=1}^nx_i\\=\frac{1}{8}(74.001+74.005+74.003+74.001+74.000+73.998+74.006+74
- 概率论与数理统计-第6章 参数估计
Ciian
概率论与数理统计概率论
6.1点估计问题概述一、点估计的概念二、评价估计量的标准无偏性定义1:设^θ(X1,…,Xn)是未知参数θ的估计量,若E(^θ)=θ,则称^θ为θ的无偏估计量定理1:设X1,…,Xn,为取自总体X的样本,总体X的均值为μ,方差为σ2,则(I)样本均值¯X是μ的无偏估计量;(2)样本方差S2是σ2的无偏估计量;&1有效性无偏性是有效性的前提。定义2:例题:*1相合性(一致性)我们不仅希望一个估计量是
- 最小描述长度MDL(Minimum Description Length)及信息论介绍
Avasla
机器学习算法概率论
信息论介绍信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化。它最初被发明是用来研究在一个含有噪声的信道上用离散的字母表来发送消息,例如通过无线电传输来通信。在这种情况下,信息论告诉我们如何对消息设计最有编码以及计算消息的期望长度,这些消息是使用多种不同编码机制、从特斯能够的概率分布上采样得到的。百度百科的解释是:信息论是运用概率论与数理统计的方法研究信息、信息熵、通信系统、
- 概率论与数理统计(期末复习)
蓝桉802
概率论
第四章数学期望与方差1.期望的性质:E(C)=C;E(X+C)=E(X)+C;E(CX)=CE(X);E(kX+C)=kE(X)+C;E(X+Y)=E(X)+E(Y);E(X-Y)=E(X-Y);;X与Y独立:E(XY)=E(X)E(Y);2.方差的性质:D(X)=E(X^2)-[E(X)]^2D(C)=0;D(X+C)=D(X);D(CX)=C^2D(X);D(kX+C)=k^2D(X);X与Y
- 概率论与数理统计 知识点+课后习题
兑生
大学课程概率论
文章目录[学习资源整合](https://www.cnblogs.com/duisheng/p/17872980.html)总复习知识点⭐常用分布的数学期望和方差选择题填空题大题1.概率2.概率3.概率4.P5.概率6.概率密度函数F(X)F(X)F(X)7.分布列求方差V(X)V(X)V(X)8.求分布函数F(X)F(X)F(X)9.求F(X)F(X)F(X)和P(X)P(X)P(X)10.求未
- AI技术体系和领域浅总结
TisUs
数学基础微积分《高等数学》线性代数《线性代数》概率统计《概率论与数理统计》信息论《信息论基础》(机械工业出版社)集合论和图论《离散数学》博弈论《博弈论》(中国人民大学出版社)张量分析现代几何计算机基础计算机原理程序设计语言操作系统分布式系统算法基础机器学习算法机器学习基础(估计方法特征工程)线性模型(线性回归)逻辑回归决策树模型(GBDT)支持向量机贝叶斯分类器神经网络(深度学习):MLPCNNR
- 概率论与数理统计基础知识
竹叶青lvye
程序员的数学概率论
计算机视觉一些算法中常会用到概论的一些知识,为了便于理解和快速回忆,博主这边对常用的一些知识点做下整理,主要来源于如下这本书籍。1.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。2.事件的概率是衡量该事件发生的可能性的量度。概率论(数学分支)_百度百科概率(统计学术语)_百度百科3.随机事件,是指的一个事
- 二月
goldfish2017
2018年已经过完一个月了,一月份完成了公司搬办公室,开年会中了个末等奖,修车的钱给保险公司也都给报销了,部门公司也彻底成为全资子公司,原来老板特意把年终奖提前给发了,手头能多少宽裕点了。如果考试成绩不理想,还是年后想办法谋求再回北京找工作,如果成绩还可以,就需要准备加试复试。一月份完成了概率论与数理统计的通读,看了两三遍课本和视频才大概了解,编译原理在年前完成通读教材一遍。减少同时关注事情的数量
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少