概率论与数理统计————3.随机变量及其分布

 一、随机变量

设E是一个随机试验,S为样本空间,样本空间的任意样本点e可以通过特定的对应法则X,使得每个样本点都有与之对应的数对应,则称X=X(e)为随机变量

概率论与数理统计————3.随机变量及其分布_第1张图片

二、分布函数

分布函数:设X为随机变量,x是任意实数,则事件{X\leqx}为随机变量X的分布函数,记为F(x)

即:F(x)=P(X\leqx)

(1)几何意义:

概率论与数理统计————3.随机变量及其分布_第2张图片

(2)某点处的概率:P(a)=P(X\leqa)-P(X

概率论与数理统计————3.随机变量及其分布_第3张图片

性质:

(1)非负性:0\leqF(x)\leq1

(2)规范性:F(+\infty)=1;F(-\infty)=0

(3)单调不减函数

(4)右连续性

例:随机变量的分布函数F(x)=a+\frac{b}{(1+x)^{2}}      x>0;F(x)=c      x\leq0

概率论与数理统计————3.随机变量及其分布_第4张图片

概率论与数理统计————3.随机变量及其分布_第5张图片三、离散型随机变量及其分布

 离散型随机变量 :X的取值为有限个或者无限可列个                                   

如:X=骰子出现的点数

分布律(概率分布):

存在:P1+P2+........+Pn=1

(1)0—1分布\binom{X}{P}=\begin{pmatrix} 0 & 1\\ p & 1-p \end{pmatrix},满足0—1分布

概率论与数理统计————3.随机变量及其分布_第6张图片

(2)二项分布

P(X=k)=C_{n}^{k}p^{k}(1-p)^{n-k}      记作:X~B(n,p)

独立重复n次试验;每次试验只有两种试验结果;试验中的概率不会发生变化

(3)泊松分布

P(X=k)=\frac{\lambda ^{k}~e^{-\lambda }}{k!}     记作:X~P(\lambda)或X~\pi (\lambda )

(4)超几何分布

\frac{C_{m}^{k} C_{N-m}^{n-k}}{C_{N}^{n}}

(5)几何分布

P(X=k)=(1-p)^{k-1} · P

你可能感兴趣的:(概率论与数理统计,概率论)