数据类型对象是用来描述与数组对应的内存区域如何使用,这依赖如下几个方面:
字节顺序是通过对数据类型预先设定"<“或”>“来决定的。”<“意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。”>"意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。
dtype 对象是使用以下语法构造的:
numpy.dtype(object, align, copy)
实例 1
import numpy as np
# 使用标量类型
dt = np.dtype(np.int32)
print(dt)
输出结果为:
int32
实例 2
import numpy as np
# int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替
dt = np.dtype('i4')
print(dt)
输出结果为:
int32
实例 3
import numpy as np
# 字节顺序标注
dt = np.dtype(')
print(dt)
输出结果为:
int32
下面实例展示结构化数据类型的使用,类型字段和对应的实际类型将被创建。
实例 4
# 首先创建结构化数据类型
import numpy as np
dt = np.dtype([('age',np.int8)])
print(dt)
输出结果为:
[(‘age’, ‘i1’)]
实例 5
# 将数据类型应用于 ndarray 对象
import numpy as np
dt = np.dtype([('age',np.int8)])
a = np.array([(10,),(20,),(30,)], dtype = dt)
print(a)
输出结果为:
[(10,) (20,) (30,)]
实例 6
# 类型字段名可以用于存取实际的 age 列
import numpy as np
dt = np.dtype([('age',np.int8)])
a = np.array([(10,),(20,),(30,)], dtype = dt)
print(a['age'])
输出结果为:
[10 20 30]
下面的示例定义一个结构化数据类型 student,包含字符串字段 name,整数字段 age,及浮点字段 marks,并将这个 dtype 应用到 ndarray 对象。
实例 7
import numpy as np
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])
print(student)
输出结果为:
[(‘name’, ‘S20’), (‘age’, ‘i1’), (‘marks’, ‘
实例 8
import numpy as np
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])
a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student)
print(a)
输出结果为:
[(‘abc’, 21, 50.0), (‘xyz’, 18, 75.0)]