推荐理由:暴力解法太 naive,中心扩散不普适,Manacher 就更不普适了,是专门解这个问题的方法。而用动态规划我认为是最有用的,可以帮助你举一反三的方法。
补充说明:Manacher 算法有兴趣的朋友们可以了解一下,有人就借助它的第一步字符串预处理思想,解决了 LeetCode 第 4 题。因此以上推荐仅代表个人观点。
解决这类 “最优子结构” 问题,可以考虑使用 “动态规划”:
1、定义 “状态”;
2、找到 “状态转移方程”。
记号说明: 下文中,使用记号 s[l, r] 表示原始字符串的一个子串,l、r 分别是区间的左右边界的索引值,使用左闭、右闭区间表示左右边界可以取到。举个例子,当 s = 'babad' 时,s[0, 1] = 'ba' ,s[2, 4] = 'bad'。
1、定义 “状态”,这里 “状态”数组是二维数组。
dp[l][r] 表示子串 s[l, r](包括区间左右端点)是否构成回文串,是一个二维布尔型数组。即如果子串 s[l, r] 是回文串,那么 dp[l][r] = true。
2、找到 “状态转移方程”。
首先,我们很清楚一个事实:
1、当子串只包含 11 个字符,它一定是回文子串;
2、当子串包含 2 个以上字符的时候:如果 s[l, r] 是一个回文串,例如 “abccba”,那么这个回文串两边各往里面收缩一个字符(如果可以的话)的子串 s[l + 1, r - 1] 也一定是回文串,即:如果 dp[l][r] == true 成立,一定有 dp[l + 1][r - 1] = true 成立。
根据这一点,我们可以知道,给出一个子串 s[l, r] ,如果 s[l] != s[r],那么这个子串就一定不是回文串。如果 s[l] == s[r] 成立,就接着判断 s[l + 1] 与 s[r - 1],这很像中心扩散法的逆方法。
事实上,当 s[l] == s[r] 成立的时候,dp[l][r] 的值由 dp[l + 1][r - l] 决定,这一点也不难思考:当左右边界字符串相等的时候,整个字符串是否是回文就完全由“原字符串去掉左右边界”的子串是否回文决定。但是这里还需要再多考虑一点点:“原字符串去掉左右边界”的子串的边界情况。
1、当原字符串的元素个数为 33 个的时候,如果左右边界相等,那么去掉它们以后,只剩下 11 个字符,它一定是回文串,故原字符串也一定是回文串;
2、当原字符串的元素个数为 22 个的时候,如果左右边界相等,那么去掉它们以后,只剩下 00 个字符,显然原字符串也一定是回文串。
把上面两点归纳一下,只要 s[l + 1, r - 1] 至少包含两个元素,就有必要继续做判断,否则直接根据左右边界是否相等就能得到原字符串的回文性。而“s[l + 1, r - 1] 至少包含两个元素”等价于 l + 1 < r - 1,整理得 l - r < -2,或者 r - l > 2。
综上,如果一个字符串的左右边界相等,以下二者之一成立即可:
1、去掉左右边界以后的字符串不构成区间,即“ s[l + 1, r - 1] 至少包含两个元素”的反面,即 l - r >= -2,或者 r - l <= 2;
2、去掉左右边界以后的字符串是回文串,具体说,它的回文性决定了原字符串的回文性。
于是整理成“状态转移方程”:
dp[l, r] = (s[l] == s[r] and (l - r >= -2 or dp[l + 1, r - 1]))
或者
dp[l, r] = (s[l] == s[r] and (r - l <= 2 or dp[l + 1, r - 1]))
编码实现细节:因为要构成子串 l 一定小于等于 r ,我们只关心 “状态”数组“上三角”的那部分取值。理解上面的“状态转移方程”中的 (r - l <= 2 or dp[l + 1, r - 1]) 这部分是关键,因为 or 是短路运算,因此,如果收缩以后不构成区间,那么就没有必要看继续 dp[l + 1, r - 1] 的取值。
读者可以思考一下:为什么在动态规划的算法中,不用考虑回文串长度的奇偶性呢。想一想,答案就在状态转移方程里面。
具体编码细节在代码的注释中已经体现。
class Solution {
public:
string longestPalindrome(string s)
{
if (s.size() < 2) return s;
int n = s.size(), maxLen = 0, start = 0;
for (int i = 0; i < n - 1; ++i)
{
searchPalindrome(s, i, i, start, maxLen);
searchPalindrome(s, i, i + 1, start, maxLen);
}
return s.substr(start, maxLen);
}
void searchPalindrome(string s, int left, int right, int& start, int& maxLen)
{
while (left >= 0 && right < s.size() && s[left] == s[right])
{
--left;
++right;
}
if (maxLen < right - left - 1)
{
start = left + 1;
maxLen = right - left - 1;
}
}
};