基于mykernel 2.0编写一个操作系统内核

一:实验要求

  1. 按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译;
  2. 基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码
  3. 简要分析操作系统内核核心功能及运行工作机制

二:搭建实验环境

  系统环境 aliyun Ubuntu 18.04.4

  配置实验环境:终端依次输入命令

 1 wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch 
 2 sudo apt install axel
 3 axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
 4 xz -d linux-5.4.34.tar.xz
 5 tar -xvf linux-5.4.34.tar
 6 cd linux-5.4.34
 7 patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
 8 sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
 9 make defconfig # Default configuration is based on 'x86_64_defconfig'
10 make -j$(nproc)                       //编译
11 sudo apt install qemu # install QEMU
12 qemu-system-x86_64 -kernel arch/x86/boot/bzImage    //启动mykernel

第一步需要,我直接从群里给的文件得到的。

运行结果如下:

my_timer_handler是时钟中断程序,每隔一定时间就会运行一次

基于mykernel 2.0编写一个操作系统内核_第1张图片

 

 

 三:进行实验

1)在mypcb.h中定义线程和进程控制块的数据结构:

#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*2
/* CPU-specific state of this task */
struct Thread {
    unsigned long        ip;              //定义进程中指令运行的位置的指针
    unsigned long        sp;              //定义进程中堆栈指针
};

typedef struct PCB{
    int pid;                         //定义进程标识符
    volatile long state;                   //定义进程状态
    unsigned long stack[KERNEL_STACK_SIZE];      //为进程分配栈存储区
    /* CPU-specific state of this task */
    struct Thread thread;                 //定义进程中的线程
    unsigned long    task_entry;              //定义进程入口函数
    struct PCB *next;                  //指向下一个进程控制块的指针
}tPCB;

void my_schedule(void);

2)修改mymain.c

#include 
#include string.h>
#include 
#include 
#include 

#include "mypcb.h"

tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;

void my_process(void);

void __init my_start_kernel(void)  //mykernel的入口函数,初始化0号进程以及启动0号进程
{
    int pid = 0;  //初始化0号进程,也就是计算机运行的第一个进程
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
  
task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
   task[pid].thread.sp
= (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process 0号进程作为父进程创建更多子进程,并通过next指针来进行连接*/ for(i=1;i) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]); task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] 启动0号进程*/ pid = 0; my_current_task = &task[pid]; asm volatile( "movq %1,%%rsp\n\t" /* set task[pid].thread.sp to rsp */ "pushq %1\n\t" /* push rbp */ "pushq %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to rip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } //启动0号进程的过程是:先将0号进程的栈顶指针sp传送给rsp寄存器,再将0号进程的栈顶指针sp和指令指针ip压入栈中
//再将栈中的指令指针ip传送给rip寄存器
int i = 0; //模拟进程调度,采用CPU时间片轮转调度算法的思想 void my_process(void) { while(1) { i++; if(i%120000000 == 0) { printk(KERN_NOTICE "process %d starts\n",my_current_task->pid); if(my_need_sched == 1)        //进程切换的标志位,若my_need_sched==1则调用my_schedule()切换进程 { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "process %d ends\n",my_current_task->pid); } } }
 
 

3)修改myinterrupt.c

#include 
#include string.h>
#include 
#include 
#include 

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/*
 * Called by timer interrupt.
 * it runs in the name of current running process,
 * so it use kernel stack of current running process
 */
//对进程所已经占用的时间片进行统计,CPU产生时钟中断的时候会调用此函数,是time_count自增
//当time_count自增1000次后将my_need_sched标志位置为1,从而在mymain.c中调用my_schedule函数进行进程切换 void my_timer_handler(void) { if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; } time_count ++ ; return; } //进行进程切换的函数 void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to next process */
     //进行进程切换的过程:先将前一个进程(要交出CPU的进程)的rbp寄存器和rsp寄存器分别保存在栈中和前一个进程的sp中
     //再将后一个进程(准备占用CPU的进程)中的sp传送给rsp寄存器中
     //把前一个进程指令执行的位置保存到前一个进程中的线程的ip中
     //先将后一个进程的ip传送进栈中,再取出来传送到rip寄存器中
     //从堆栈中取出下一个进程的栈底保存到rbp寄存器中 asm
volatile( "pushq %%rbp\n\t" /* save rbp of prev */ "movq %%rsp,%0\n\t" /* save rsp of prev */ "movq %2,%%rsp\n\t" /* restore rsp of next */ "movq $1f,%1\n\t" /* save rip of prev */ "pushq %3\n\t" "ret\n\t" /* restore rip of next */ "1:\t" /* next process start here */ "popq %%rbp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }

4)重新编译运行,得到结果:

基于mykernel 2.0编写一个操作系统内核_第2张图片

 

你可能感兴趣的:(基于mykernel 2.0编写一个操作系统内核)