刚开始我认为这两者是等同的,但后来发现并不是这样;下面直接抛出结论:
1)可迭代对象包含迭代器。你也许会问,结论3与结论2是不是有一点矛盾?既然一个对象拥有了next方法就是迭代器,那为什么迭代器必须同时实现两方法呢?
因为结论1,迭代器也是可迭代对象,因此迭代器必须也实现__iter__方法。介绍一下上面涉及到的两个方法:
1)__iter__()
该方法返回的是当前对象的迭代器类的实例。因为可迭代对象与迭代器都要实现这个方法,因此有以下两种写法。
写法一:用于可迭代对象类的写法,返回该可迭代对象的迭代器类的实例。
写法二:用于迭代器类的写法,直接返回self(即自己本身),表示自身即是自己的迭代器。
也许有点晕,没关系,下面会给出两写法的例子,我们结合具体例子看。
返回迭代的每一步,实现该方法时注意要最后超出边界要抛出StopIteration异常。
下面举个可迭代对象与迭代器的例子:
#!/usr/bin/env python
# coding=utf-8
class MyList(object): # 定义可迭代对象类
def __init__(self, num):
self.data = num # 上边界
def __iter__(self):
return MyListIterator(self.data) # 返回该可迭代对象的迭代器类的实例
class MyListIterator(object): # 定义迭代器类,其是MyList可迭代对象的迭代器类
def __init__(self, data):
self.data = data # 上边界
self.now = 0 # 当前迭代值,初始为0
def __iter__(self):
return self # 返回该对象的迭代器类的实例;因为自己就是迭代器,所以返回self
def next(self): # 迭代器类必须实现的方法
while self.now < self.data:
self.now += 1
return self.now - 1 # 返回当前迭代值
raise StopIteration # 超出上边界,抛出异常
my_list = MyList(5) # 得到一个可迭代对象
print type(my_list) # 返回该对象的类型
my_list_iter = iter(my_list) # 得到该对象的迭代器实例,iter函数在下面会详细解释
print type(my_list_iter)
for i in my_list: # 迭代
print i
运行结果:
通过上面的例子,相信对可迭代对象与迭代器有了更具体的认识,那么生成器与它们有什么关系呢?下面简单谈一谈
生成器是一种特殊的迭代器,生成器自动实现了“迭代器协议”(即__iter__和next方法),不需要再手动实现两方法。
生成器在迭代的过程中可以改变当前迭代值,而修改普通迭代器的当前迭代值往往会发生异常,影响程序的执行。
看一个生成器的例子:
#!/usr/bin/env python
# coding=utf-8
def myList(num): # 定义生成器
now = 0 # 当前迭代值,初始为0
while now < num:
val = (yield now) # 返回当前迭代值,并接受可能的send发送值;yield在下面会解释
now = now + 1 if val is None else val # val为None,迭代值自增1,否则重新设定当前迭代值为val
my_list = myList(5) # 得到一个生成器对象
print my_list.next() # 返回当前迭代值
print my_list.next()
my_list.send(3) # 重新设定当前的迭代值
print my_list.next()
print dir(my_list) # 返回该对象所拥有的方法名,可以看到__iter__与next在其中
运行结果:
参考资料:
Python核心编程第二版11.10节,13.13.3节
完全理解Python迭代对象、迭代器、生成器
深入讲解Python中的迭代器和生成器
如何更好地理解Python迭代器和生成器
文中如有不恰当的地方,还望包容和指出,感谢