在家宅着也能抵抗肺炎!玩一玩SEIR传染病模型

这几天的武汉肺炎疫情沸沸扬扬,为了抗击新型肺炎,整天宅在家里。七八年前刚入门社交网络相关研究的时候,接触了一下经典的传染病模型,如SI,SIS,SIR等。目前,朋友圈到处在传这波疫情的后续发展的趋势预测,于是准备再把这些东西捡起来,看看到底是个啥情况。

SI模型

我们先从最简单的SI模型学起,首先我们把人群分为2种,一种是易感者(Susceptibles),易感者是健康的人群,用 S 表示其人数,另外一种是感染者(The Infected),即患者,人数用 I 来表示。我们假设一个区域内总人数是N,即 N=S+I ,

有 I 个感染者整天到处溜达,每天碰到 r个人,有 b 的概率会传染疾病,健康人比例为 S/N 将以上所有量乘在一起就是每天新增感染病例,我们看下其微分方程形式

有了这么一个公式我们就可以进行仿真了,上述式子实际上就是一个马尔科夫链

马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。

用在这里也一样,即当天的感染情况只和前一天的疾病感染人数有关。第N天的的人数我们可以表示为

来,上matab仿真,看看效果

%--------------------------------------------------------------------------
%   初始化
%--------------------------------------------------------------------------
clear;clc;

%--------------------------------------------------------------------------
%   参数设置
%--------------------------------------------------------------------------
N = 10000;                                                                  %人口总数
I = 1;                                                                      %传染者
S = N - I;                                                                  %易感者

r = 10;                                                                     %感染者接触易感者的人数
B = 0.01;                                                                   %传染概率


T = 1:200;
for idx = 1:length(T)-1
    S(idx+1) = S(idx) - r*B*I(idx)*S(idx)/N;
    I(idx+1) = I(idx) + r*B*I(idx)*S(idx)/N;
end

plot(T,S,T,I);grid on;
xlabel('天');ylabel('人数')
legend('易感者','传染者');title('SI模型')

在家宅着也能抵抗肺炎!玩一玩SEIR传染病模型_第1张图片

我们设置的初始条件为人数 N=10000,初始感染者 I=1 ,每天闲逛到处溜达接触的人数是 r=10 ,接触后传染的概率为 b=0.01 。

也就是说,要是没人管让传染者整天在街上红哒哒白哒哒,那完蛋了,全部都得中招!

这个模型还是比较简单,一旦中招无法治愈,整个一生化危机。

SIS模型

我们加点料,增加点复杂度,有的人治好了但是还会反复感染,类似流感这样子。

这样子的模型就是SIS模型,SIS模型比SI模型多了一个感染者 I 恢复健康的概率 \gamma 。

再次加入到迭代方程里面

那么,同马尔科夫链一样,修改下公式应该为

略微修改下SI的代码我们就得到了SIS模型

%--------------------------------------------------------------------------
%   初始化
%--------------------------------------------------------------------------
clear;clc;

%--------------------------------------------------------------------------
%   参数设置
%--------------------------------------------------------------------------
N = 10000;                                                                  %人口总数
I = 1;                                                                      %传染者
S = N - I;                                                                  %易感者

r = 10;                                                                     %感染者接触易感者的人数
B = 0.01;                                                                   %传染概率
y = 0.02;                                                                   %康复概率

T = 1:200;
for idx = 1:length(T)-1
    S(idx+1) = S(idx) - r*B*I(idx)*S(idx)/N + y*I(idx);
    I(idx+1) = I(idx) + r*B*I(idx)*S(idx)/N - y*I(idx);
end

plot(T,S,T,I);grid on;
xlabel('天');ylabel('人数')
legend('易感者','传染者');title('SIS模型')

在家宅着也能抵抗肺炎!玩一玩SEIR传染病模型_第2张图片

初始条件为人数 N=10000 ,初始感染者 I=1 ,每天闲逛到处溜达接触的人数是 r=10 ,接触后传染的概率为 b=0.01 ,中招后康复的概率为 \gamma =0.02 。

最终生病和健康的人数形成了一个稳定的动态平衡。

SIR模型

我们继续增加模型复杂度,人在康复以后产生了抗体就不会再得病。不同于SIS模型,我们在模型中引入康复者(The Recovered),用 R 表示,并满足总人数 N=S+I+R 。这个时候就是SIR模型。一旦变为康复者,就不会再传染,即在概率传递过程中,一旦变为康复者,就没有概率再次转移为感染者或者易感者。我们假设感染者变为康复者的概率为我们来看下SIR模型的微分方程

在家宅着也能抵抗肺炎!玩一玩SEIR传染病模型_第3张图片

在家宅着也能抵抗肺炎!玩一玩SEIR传染病模型_第4张图片

仿真代码如下

%--------------------------------------------------------------------------
%   初始化
%--------------------------------------------------------------------------
clear;clc;

%--------------------------------------------------------------------------
%   参数设置
%--------------------------------------------------------------------------
N = 10000;                                                                  %人口总数
I = 1;                                                                      %传染者
S = N - I;                                                                  %易感者
R = 0;                                                                      %康复者

r = 10;                                                                     %感染者接触易感者的人数
B = 0.05;                                                                   %传染概率
y = 0.1;                                                                    %康复概率

T = 1:100;
for idx = 1:length(T)-1
    S(idx+1) = S(idx) - r*B*S(idx)*I(idx)/N;
    I(idx+1) = I(idx) + r*B*S(idx)*I(idx)/N - y*I(idx);
    R(idx+1) = R(idx) + y*I(idx);
end

plot(T,S,T,I,T,R);grid on;
xlabel('天');ylabel('人数')
legend('易感者','传染者','康复者')

在家宅着也能抵抗肺炎!玩一玩SEIR传染病模型_第5张图片

这样子一看我们就发现和现实生活中比较接近了,按照这个参数仿真,在传播初期30天左右会迎来一个峰值,感染人数达到5000人,随着治疗康复的人越来越多,感染者下降,拥有抗体的人数不断增多,病情得到控制,感染者人数减少。

SEIR模型

实际情况更加复杂,易感染人群在一开始会经历潜伏期,一段时间之后才出现症状,因此我们在SIR模型的基础上引入潜伏者E (The Exposed),潜伏者按照概率 \alpha 转化为感染者,在SIR的基础上修改微分方程

在家宅着也能抵抗肺炎!玩一玩SEIR传染病模型_第6张图片

同样,在SIR模型的基础上略微修改代码就得到了SEIR模型

%--------------------------------------------------------------------------
%   初始化
%--------------------------------------------------------------------------
clear;clc;

%--------------------------------------------------------------------------
%   参数设置
%--------------------------------------------------------------------------
N = 10000;                                                                  %人口总数
E = 0;                                                                      %潜伏者
I = 1;                                                                      %传染者
S = N - I;                                                                  %易感者
R = 0;                                                                      %康复者

r = 20;                                                                     %感染者接触易感者的人数
B = 0.03;                                                                   %传染概率
a = 0.1;                                                                    %潜伏者转化为感染者概率
y = 0.1;                                                                    %康复概率

T = 1:140;
for idx = 1:length(T)-1
    S(idx+1) = S(idx) - r*B*S(idx)*I(idx)/N;
    E(idx+1) = E(idx) + r*B*S(idx)*I(idx)/N-a*E(idx);
    I(idx+1) = I(idx) + a*E(idx) - y*I(idx);
    R(idx+1) = R(idx) + y*I(idx);
end

plot(T,S,T,E,T,I,T,R);grid on;
xlabel('天');ylabel('人数')
legend('易感者','潜伏者','传染者','康复者')

在家宅着也能抵抗肺炎!玩一玩SEIR传染病模型_第7张图片

我们看到潜伏者数量也是先增加再减少。

 

修改后的SEIR模型

现在已经比较接近真实情况了,但是我们看到这次的病毒潜伏期具有传染性(前面的潜伏者只是正常的人通过接触患者变成潜伏者,而实际上,潜伏者和正常人接触后也可能让正常人变成潜伏者),因此我们要引入潜伏者的传染概率 \beta _{2} 可以将健康的易感者转变为潜伏者。而潜伏者每天接触的健康易感者人数为 \gamma _{2} 。

在家宅着也能抵抗肺炎!玩一玩SEIR传染病模型_第8张图片

代码如下:

%--------------------------------------------------------------------------
%   初始化
%--------------------------------------------------------------------------
clear;clc;

%--------------------------------------------------------------------------
%   参数设置
%--------------------------------------------------------------------------
N = 10000;                                                                  %人口总数
E = 0;                                                                      %潜伏者
I = 1;                                                                      %传染者
S = N - I;                                                                  %易感者
R = 0;                                                                      %康复者

r = 20;                                                                     %感染者接触易感者的人数
B = 0.03;                                                                   %传染概率
a = 0.1;                                                                    %潜伏者转化为感染者概率
r2 = 20;                                                                    %潜伏者接触易感者的人数
B2 = 0.03;                                                                  %潜伏者传染正常人的概率
y = 0.1;                                                                    %康复概率

T = 1:140;
for idx = 1:length(T)-1
    S(idx+1) = S(idx) - r*B*S(idx)*I(idx)/N(1) - r2*B2*S(idx)*E(idx)/N;
    E(idx+1) = E(idx) + r*B*S(idx)*I(idx)/N(1)-a*E(idx) + r2*B2*S(idx)*E(idx)/N;
    I(idx+1) = I(idx) + a*E(idx) - y*I(idx);
    R(idx+1) = R(idx) + y*I(idx);
    
end

plot(T,S,T,E,T,I,T,R);grid on;
xlabel('天');ylabel('人数')
legend('易感者','潜伏者','传染者','康复者')

在家宅着也能抵抗肺炎!玩一玩SEIR传染病模型_第9张图片

 

我们发现潜伏者一旦可以感染,人数爆发期大幅度提前,那么如果我们都在家宅怎么办?

我们假设在第10天的时候,命令下发,不要闲逛。

那么这时候将感染者接触健康易感人群人数 r=5,潜伏者接触健康易感人群人数是r2=5。我们在代码中加入if条件,修改接触人数:

%--------------------------------------------------------------------------
%   初始化
%--------------------------------------------------------------------------
clear;clc;

%--------------------------------------------------------------------------
%   参数设置
%--------------------------------------------------------------------------
N = 10000;                                                                  %人口总数
E = 0;                                                                      %潜伏者
I = 1;                                                                      %传染者
S = N - I;                                                                  %易感者
R = 0;                                                                      %康复者

r = 20;                                                                     %感染者接触易感者的人数
B = 0.03;                                                                   %传染概率
a = 0.1;                                                                    %潜伏者转化为感染者概率
r2 = 20;                                                                    %潜伏者接触易感者的人数
B2 = 0.03;                                                                  %潜伏者传染正常人的概率
y = 0.1;                                                                    %康复概率

T = 1:140;
for idx = 1:length(T)-1
    if idx>=10
        r=5;
        r2=5;
    end
    S(idx+1) = S(idx) - r*B*S(idx)*I(idx)/N(1) - r2*B2*S(idx)*E(idx)/N;
    E(idx+1) = E(idx) + r*B*S(idx)*I(idx)/N(1)-a*E(idx) + r2*B2*S(idx)*E(idx)/N;
    I(idx+1) = I(idx) + a*E(idx) - y*I(idx);
    R(idx+1) = R(idx) + y*I(idx);
    
end

plot(T,S,T,E,T,I,T,R);grid on;
hold on
plot([10 10],[0 10000])
xlabel('天');ylabel('人数')
legend('易感者','潜伏者','传染者','康复者','执行戒严措施')
title('戒严措施对SEIR模型的影响')

在家宅着也能抵抗肺炎!玩一玩SEIR传染病模型_第10张图片

 在家宅着也能抵抗肺炎!玩一玩SEIR传染病模型_第11张图片

我们可以看到,疾病高发期的时间向后延长和疾病高峰人数大幅下降,这样子为我们抗击肺炎病毒争取了更多的应对时间,并且人数的减少大幅度降低了社会资源的消耗

因此得出结论:

我们在家宅着是可以为抗击疫情做贡献的,大家还是好好听话,不要出去随便穿门走动,要么被村长的广播嘲讽,多丢人哪。玩瘟疫公司去了~溜了溜了

 

你可能感兴趣的:(数学,其他)