pytorch--图像处理

#导入模块
import torch
import torchvision#数据集库
import torchvision.transforms as transforms

#数据集加载模块
transform=transforms.Compose(
    [transforms.ToTensor(),
    transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])#normalize对三个通道分别设置(均值)(标准差)
print("1")
#训练集
#数据集下载到本地
trainset=torchvision.datasets.CIFAR10(root="./image_data",train=True,download=False,transform=transform)
print("2")
#数据集加载
trainloader=torch.utils.data.DataLoader(trainset,batch_size=4,shuffle=True,num_workers=2)
print("3")

#测试集
testset=torchvision.datasets.CIFAR10(root="./image_data",train=False,download=False,transform=transform)
testloader=torch.utils.data.DataLoader(testset,batch_size=4,shuffle=True,num_workers=2)


#10个类别
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')


import matplotlib.pyplot as plt
import numpy as np

#可视化查看图片
def imshow(img):
    print(img.size())#输出[3,32,128]3代表三通道,32表示一幅图片的尺寸,128表示4张图片连在了一块显示
    img = img / 2 + 0.5     # unnormalize(因为用matplotlib作图RGB图像值要在0-1之间)
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))#数据维度切换,用matplotlib作图,第三个维度是通道数
    plt.imshow(npimg)
    plt.show()


#设置一个迭代器
iteration=iter(trainloader)#用训练集
images,labels=iteration.next()#每次产生一个mini_batch

#查看一下图片
# imshow(torchvision.utils.make_grid(images))
labels
for i in range(4):
    print("第",i,"副图片的标签是:",classes[labels[i]])


import torch.nn as nn
import torch.nn.functional as F
#定义神经网络
class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1=nn.Conv2d(3,6,5)
        self.conv2=nn.Conv2d(6,16,5)
        
        self.f1=nn.Linear(16*5*5,128)
        self.f2=nn.Linear(128,64)
        self.f3=nn.Linear(64,10)
        
    def forward(self,x):
        x=F.max_pool2d(F.relu(self.conv1(x)),(2,2))
        x=F.max_pool2d(F.relu(self.conv2(x)),(2,2))
        
        x=x.view(-1,self.num_reshapes(x))
        x=F.relu(self.f1(x))
        x=F.relu(self.f2(x))
        x=self.f3(x)
        
        return x
    
    #维度转换函数
    def num_reshapes(self,x):
        size=x.size()[1:]
        num_counts=1
        for i in size:
            num_counts*=i
        return num_counts

#实例化网络
net=Net()

out=net(images)
out#输出的是一个mini_batch的结果[4,10]  对四幅图片最后得出的一维向量   用于分类

#定义损失函数
loss_function=nn.CrossEntropyLoss()
#定义优化器
optimizer=torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

loss_list=[]
for epoch in range(2):  # loop over the dataset multiple times
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        #获得训练集数据和标签
        #input是[4,3,32,32]维度格式的,4是mini_batch,3是通道,32*32是尺寸,labels是[3,6,4,9]分别对应mini_batch中每张图片的分类
        inputs, labels = data

        # 梯度清零
        optimizer.zero_grad()

        # 前向传播得到结果
        outputs = net(inputs)
        #得到损失值
        loss = loss_function(outputs, labels)
        #反向传播
        loss.backward()
        #梯度更新到每一步
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            loss_list.append(running_loss/2000)
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

#画loss曲线
import matplotlib.pyplot as plt
plt.plot([i for i in range(12)],loss_list,"red")
plt.xlabel("epoch")
plt.ylabel("loss")
plt.show()

import numpy as np
#在整个数据集上来预测模型的效果
correct=0#记录预测正确的
total=0#总的图像数目
with torch.no_grad():
    for i,data in enumerate(testloader,0):
        total+=4
        #数据和标签
        images,labels=data
        #正向传播得到输出值
        outputs=net(images)
        #得到最大分类值和对应的索引
        max_value,class_index=torch.max(input=outputs,dim=1)#维度为1
        #对预测标签和原始标签列表  求对应位置相同的有多少值  即分类正确的
        a=np.array(class_index)
        b=np.array(labels)
        correct+=sum(a==b)
print("total:",total,"correct:",correct,"正确率:",100*correct/total,"%")
    
    

 

你可能感兴趣的:(pytorch)