利用各向异性平滑图像

转载自:matlab练习程序(各向异性扩散)

主要是用来平滑图像的,克服了高斯模糊的缺陷,各向异性扩散在平滑图像时是保留图像边缘的(和双边滤波很像)。
通常我们有将图像看作矩阵的,看作图的,看作随机过程的,记得过去还有看作力场的。
这次新鲜,将图像看作热量场了。每个像素看作热流,根据当前像素和周围像素的关系,来确定是否要向周围扩散。比如某个邻域像素和当前像素差别较大,则代表这个邻域像素很可能是个边界,那么当前像素就不向这个方向扩散了,这个边界也就得到保留了。

先看下效果吧:

原图 经过处理之后的图
利用各向异性平滑图像_第1张图片 利用各向异性平滑图像_第2张图片

具体的推导公式都是热学上的,自己也不太熟悉,感兴趣的可以去看原论文,引用量超7000。
我这里只介绍一下最终结论用到的公式。
主要迭代方程如下:

It+1=It+λ(cNx,yN(It)+cSx,yS(It)+cEx,yE(It)+cWx,yW(It))

I就是图像了,因为是个迭代公式,所以有迭代次数t。
四个散度公式是在四个方向上对当前像素求偏导,news就是东南西北,公式如下:
N(Ix,y)S(Ix,y)E(Ix,y)W(Ix,y)=Ix,y1Ix,y=Ix,y1Ix,y=Ix,y1Ix,y=Ix,y1Ix,y

而cN,cS,cE,cW则代表四个方向上的导热系数,边界的导热系数都是小的。公式如下:
cNx,ycSx,ycEx,ycWx,y=exp(||N(I)||2/k2)=exp(||S(I)||2/k2)=exp(||E(I)||2/k2)=exp(||W(I)||2/k2)

最后整个公式需要先前设置的参数主要有三个,迭代次数t,根据情况设置;导热系数相关的k,取值越大越平滑,越不易保留边缘; λ 同样也是取值越大越平滑。

clear all;
close all;
clc;

k=15;           %导热系数,控制平滑
lambda=0.15;    %控制平滑
N=20;           %迭代次数
img=double(imread('lena.jpg'));
imshow(img,[]);
[m n]=size(img);

imgn=zeros(m,n);
for i=1:N

    for p=2:m-1
        for q=2:n-1
            %当前像素的散度,对四个方向分别求偏导,局部不同方向上的变化量,
            %如果变化较多,就证明是边界,想方法保留边界
            NI=img(p-1,q)-img(p,q);
            SI=img(p+1,q)-img(p,q);
            EI=img(p,q-1)-img(p,q);
            WI=img(p,q+1)-img(p,q);

            %四个方向上的导热系数,该方向变化越大,求得的值越小,从而达到保留边界的目的
            cN=exp(-NI^2/(k*k));
            cS=exp(-SI^2/(k*k));
            cE=exp(-EI^2/(k*k));
            cW=exp(-WI^2/(k*k));

            imgn(p,q)=img(p,q)+lambda*(cN*NI+cS*SI+cE*EI+cW*WI);  %扩散后的新值      
        end
    end

    img=imgn;       %整个图像扩散完毕,用已扩散图像的重新扩散。
end

figure;
imshow(imgn,[]);

效果不错^^,感谢原作者

参考文献:《特征提取与图像处理(第二版)》

你可能感兴趣的:(MATLAB,图像处理)