转载自:matlab练习程序(各向异性扩散)
主要是用来平滑图像的,克服了高斯模糊的缺陷,各向异性扩散在平滑图像时是保留图像边缘的(和双边滤波很像)。
通常我们有将图像看作矩阵的,看作图的,看作随机过程的,记得过去还有看作力场的。
这次新鲜,将图像看作热量场了。每个像素看作热流,根据当前像素和周围像素的关系,来确定是否要向周围扩散。比如某个邻域像素和当前像素差别较大,则代表这个邻域像素很可能是个边界,那么当前像素就不向这个方向扩散了,这个边界也就得到保留了。
先看下效果吧:
原图 | 经过处理之后的图 |
---|---|
![]() |
![]() |
具体的推导公式都是热学上的,自己也不太熟悉,感兴趣的可以去看原论文,引用量超7000。
我这里只介绍一下最终结论用到的公式。
主要迭代方程如下:
clear all;
close all;
clc;
k=15; %导热系数,控制平滑
lambda=0.15; %控制平滑
N=20; %迭代次数
img=double(imread('lena.jpg'));
imshow(img,[]);
[m n]=size(img);
imgn=zeros(m,n);
for i=1:N
for p=2:m-1
for q=2:n-1
%当前像素的散度,对四个方向分别求偏导,局部不同方向上的变化量,
%如果变化较多,就证明是边界,想方法保留边界
NI=img(p-1,q)-img(p,q);
SI=img(p+1,q)-img(p,q);
EI=img(p,q-1)-img(p,q);
WI=img(p,q+1)-img(p,q);
%四个方向上的导热系数,该方向变化越大,求得的值越小,从而达到保留边界的目的
cN=exp(-NI^2/(k*k));
cS=exp(-SI^2/(k*k));
cE=exp(-EI^2/(k*k));
cW=exp(-WI^2/(k*k));
imgn(p,q)=img(p,q)+lambda*(cN*NI+cS*SI+cE*EI+cW*WI); %扩散后的新值
end
end
img=imgn; %整个图像扩散完毕,用已扩散图像的重新扩散。
end
figure;
imshow(imgn,[]);
效果不错^^,感谢原作者
参考文献:《特征提取与图像处理(第二版)》