cifar100,vgg13
import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
tf.random.set_seed(2345)
conv_layers = [
layers.Conv2D(64, kernel_size=[3, 3], padding = 'same',activation=tf.nn.relu),
layers.Conv2D(64, kernel_size=[3, 3], padding = 'same',activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2,2],strides=2,padding='same'),
layers.Conv2D(128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
layers.Conv2D(256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
]
def preprocess(x,y):
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x, y
(x,y), (x_test,y_test)= datasets.cifar100.load_data()
y = tf.squeeze(y,axis=1)
y_test= tf.squeeze(y_test,axis=1)
print (x.shape, y.shape, x_test.shape,y_test.shape)
batchsz=64
train_db = tf.data.Dataset.from_tensor_slices((x,y))
train_db = train_db.shuffle(1000).map(preprocess).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))
test_db = test_db.shuffle(1000).map(preprocess).batch(batchsz)
sample = next(iter(train_db))
print ('sample:',sample[0].shape, sample[1].shape,
tf.reduce_min(sample[0]),tf.reduce_max(sample[0]))
def main():
conv_net= Sequential(conv_layers)
conv_net.build(input_shape=[None, 32, 32, 3])
fc_net =Sequential([
layers.Dense(256,activation=tf.nn.relu),
layers.Dense(128,activation=tf.nn.relu),
layers.Dense(100,activation=None)
])
conv_net.build(input_shape=[None, 32, 32, 3])
fc_net.build(input_shape=[None, 512])
optimizer = optimizers.Adam(lr=1e-4)
variables = conv_net.trainable_variables + fc_net.trainable_variables
for epoch in range(50):
for step, (x,y) in enumerate(train_db):
with tf.GradientTape() as tape:
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
logits = fc_net(out)
y_onehot = tf.one_hot(y, depth=100)
loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits =True)
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(grads, variables))
if step %10 ==0:
print ('epoch:',epoch,'step:',step, 'loss:',float(loss))
total_num = 0
total_correct=0
for x,y in test_db:
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
logits = fc_net(out)
prob = tf.nn.softmax(logits, axis=1)
pred = tf.argmax(prob,axis=1)
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y),dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_num += x.shape[0]
total_correct += int(correct)
acc = total_correct / total_num
print(epoch,'acc:',acc)
if __name__ =='__main__':
main()