Jetson Nano开箱(图为&沥拓)

1、Jetson Nano 官方资料下载
Jetson Nano Developer Kit官方介绍
Get-Started-With-Jetson-Nano-Devkit
Jetson-Nano-Dev-Kit-Sd-Card-Image
NVIDIA Jetson-Nano-Resources
Jetson Nano Wiki
Jetson Nano Upstream

图为科技Jetson Nano 运行通用案例分享(持续更新)

Jetson Nano 对应的DeepStream 2019Q2 才会发布,目前采用Nano 做的项目还是比较受限,期待DS 有更高的性能表现!

Jetson Nano开箱(图为&沥拓)_第1张图片
image.png

2、Jetson Nano刷机

Nano MicroSD卡刷机工具:SDCardFormatter 和 balenaEtcher
Nano MicroSD卡系统镜像:jetson-nano-sd-r32.1-2019-03-18.zip (5.6GB),但解压缩后大约12GB多,运行在Micro SD卡,因此SD卡务必16GB及以上且高速UHS(参考NV 说明),否则刷TF卡镜像和系统软件运行时会慢如牛,你想砸了Nano或TF卡!
MicroSD卡选型可参考文章: 一文看懂各种储存卡:TF卡、SD/SDHC/SDXC卡、CF卡和Class等级

Jetson Nano开箱(图为&沥拓)_第2张图片
image.png

TF卡(Nano运行)测试方法 (无其他软件运行):
SanDisk --- UHS-I接口兼容(Speed: Class10 + A1)

写入速度测试:
$ dd count=1k bs=1M if=/dev/zero of=/home/nvidia/tst.img
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 47.5029 s, 22.6 MB/s

读取速度测试:
$ sudo apt-get install hdparm
$ sudo hdparm -t /dev/mmcblk0p1
/dev/mmcblk0p1:
 Timing buffered disk reads: 244 MB in  3.01 seconds =  81.19 MB/sec

SanDisk --- UHS-I接口兼容(Speed: U3 + V30 + A1)

读取速度测试:
$ sudo apt-get install hdparm
$ sudo hdparm -t /dev/mmcblk0p1
/dev/mmcblk0p1:
 Timing buffered disk reads: 258 MB in  3.01 seconds =  85.61 MB/sec

写入速度测试:
nvidia@tw-Nano:~$ dd count=1k bs=1M if=/dev/zero of=/home/nvidia/tst.img
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 8.68056 s, 124 MB/s

刷机过程如图:

Jetson Nano开箱(图为&沥拓)_第3张图片
image.png

3、供电USB 5V 2A 供电自动开机(外加了一个风扇)

image.png

AC Adapter 必须5V 开机

image.png

4. Jetson Nano套件特性

硬件接口

  • Ports & Interfaces
  • 4x USB 3.0 A (Host)
  • USB 2.0 Micro B (Device)
  • MIPI CSI-2 x2 (15-position Camera Flex Connector)
  • HDMI 2.0
  • DisplayPort
  • Gigabit Ethernet (RJ45)
  • M.2 Key-E with PCIe x1
  • MicroSD card slot
  • (3x) I2C, (2x) SPI, UART, I2S, GPIOs

软件列表

  • JetPack 4.2
  • Linux4Tegra R32.1 (L4T)
  • Linux kernel 4.9
  • Ubuntu 18.04 LTS aarch64
  • CUDA Toolkit 10.0
  • cuDNN 7.3.1
  • TensorRT 5.0.6
  • TensorFlow 1.31.1
  • VisionWorks 1.6
  • OpenCV 3.3.1
  • OpenGL 4.6
  • OpenGL ES 3.2
  • EGL 1.5
  • Vulkan 1.1
  • GStreamer 1.14.1
  • V4L2 media controller support

5. 指导资料和教程文档

System Tools系统工具
  • L4T Kernel Development Guide
  • Power Supply Considerations
  • Upstream Development Guide
Deep Learning深度学习资料
  • Hello AI World (jetson-inference)
  • TensorFlow 1.13.1 Installer (pip wheel)
  • PyTorch 1.1 Installer (pip wheel)
    See the NVIDIA AI-IoT GitHub for other coding resources on deploying AI and deep learning.
Robotics 机器人应用
  • NVIDIA JetBot (AI-powered robotics kit)
  • jetbot_ros (ROS nodes for JetBot)
  • ROS Melodic (ROS install guide)
  • ros_deep_learning (jetson-inference nodes)
Camera 模组
  • Leopard Imaging LI-IMX219-MIPI-FF-NANO
  • Raspberry Pi Camera v2 (IMX219)
  • Stereolabs ZED (stereo camera)

CUDA 10(路径:/usr/local/cuda/,但未加入环境变量)
运行如下命令添加环境变量:
export PATH=${PATH}:/usr/local/cuda/bin
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64

sudo apt-get update
sudo apt-get install samba
sudo apt-get install python3-pip
Tensorflow 1.13.1
pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v42 tensorflow-gpu==1.13.1+nv19.3 --user
安装过程若报错hdf5,请安装:
sudo apt-get install libhdf5-serial-dev

PS: Nano features list:
Nano 不支持SATA 硬盘,但可以通过如下方式:
1.USB3 SATA dongle
2.M.2 Key-E to Mini-PCIe adapter (未验证)
"$sudo nvpmodel -m 1" ---> Nano run in 5W (Power:5V1A)
"$sudo nvpmodel -m 0" ---> Nano run in 10W (Power:5V2A)
Supported video codecs: H.265, H.264, VP8, VP9 (VP9 decode only)
HEVC encoder supports 10-bit color, but B-frames are not supported

你可能感兴趣的:(Jetson Nano开箱(图为&沥拓))