前言: scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包。它通过NumPy, SciPy和Matplotlib等python数值计算的库实现高效的算法应用,并且涵盖了几乎所有主流机器学习算法。
以下内容整理自 菜菜的机器学习课堂.
sklearn官网链接: 点击这里.
在过去的五周之内,我们学习了决策树,随机森林,PCA和逻辑回归,他们虽然有着不同的功能,但却都属于“有监 督学习”的一部分,即是说,模型在训练的时候,即需要特征矩阵X,也需要真实标签y。机器学习当中,还有相当 一部分算法属于“无监督学习”,无监督的算法在训练的时候只需要特征矩阵X,不需要标签。而聚类算法,就是无 监督学习的代表算法。
聚类算法又叫做“无监督分类”,其目的是将数据划分成有意义或有用的组(或簇)。这种划分可以基于我们的业务 需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布。比如在商业中,如果我们手头有大量 的当前和潜在客户的信息,我们可以使用聚类将客户划分为若干组,以便进一步分析和开展营销活动,最有名的客 户价值判断模型RFM,就常常和聚类分析共同使用。再比如,聚类可以用于降维和矢量量化(vector quantization),可以将高维特征压缩到一列当中,常常用于图像,声音,视频等非结构化数据,可以大幅度压缩 数据量。
聚类 | 分类 | |
---|---|---|
核心 | 将数据分成多个组;探索每个组的数据是否有联系 | 从已经分组的数据中去学习;把新数据放到已经分好的组中去 |
学习类型 | 无监督,无需标签进行训练 | 有监督,需要标签进行训练 |
典型算法 | K-Means,DBSCAN,层次聚类,光谱聚类 | 决策树,贝叶斯,逻辑回归 |
算法输出 | 聚类结果是不确定的;不一定总是能够反映数据的真实分类;同样的聚类,根据不同的业务需求;可能是一个好结果,也可能是一个坏结果 | 分类结果是确定的;分类的优劣是客观的;不是根据业务或算法需求决定 |
聚类算法在sklearn中有两种表现形式,一种是类(和我们目前为止学过的分类算法以及数据预处理方法们都一 样),需要实例化,训练并使用接口和属性来调用结果。另一种是函数(function),只需要输入特征矩阵和超参 数,即可返回聚类的结果和各种指标。
作为聚类算法的典型代表,KMeans可以说是最简单的聚类算法没有之一,那它是怎么完成聚类的呢?
关键概念:簇与质心 |
---|
KMeans算法将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上来看是簇是一组一组聚集在一起的数 据,在一个簇中的数据就认为是同一类。簇就是聚类的结果表现。 |
簇中所有数据的均值 通常被称为这个簇的“质心”(centroids)。在一个二维平面中,一簇数据点的质心的 横坐标就是这一簇数据点的横坐标的均值,质心的纵坐标就是这一簇数据点的纵坐标的均值。同理可推广至高 维空间。 |
在KMeans算法中,簇的个数K是一个超参数,需要我们人为输入来确定。KMeans的核心任务就是根据我们设定好 的K,找出K个最优的质心,并将离这些质心最近的数据分别分配到这些质心代表的簇中去。具体过程可以总结如 下:
顺序 | 过程 |
---|---|
1 | 随机抽取K个样本作为最初的质心 |
2 | 开始循环: |
2.1 | 将每个样本点分配到离他们最近的质心,生成K个簇 |
2.2 | 对于每个簇,计算所有被分到该簇的样本点的平均值作为新的质心 |
3 | 当质心的位置不再发生变化,迭代停止,聚类完成 |
那什么情况下,质心的位置会不再变化呢?当我们找到一个质心,在每次迭代中被分配到这个质心上的样本都是一 致的,即每次新生成的簇都是一致的,所有的样本点都不会再从一个簇转移到另一个簇,质心就不会变化了。
这个过程在可以由下图来显示,我们规定,将数据分为4簇(K=4),其中白色X代表质心的位置:
在数据集下多次迭代(iteration),模型就会收敛。第六次迭代之后,基本上质心的位置就不再改变了,生成的簇也 变得稳定。此时我们的聚类就完成了,我们可以明显看出,KMeans按照数据的分布,将数据聚集成了我们规定的 4类,接下来我们就可以按照我们的业务需求或者算法需求,对这四类数据进行不同的处理。
聚类算法聚出的类有什么含义呢?这些类有什么样的性质?我们认为,被分在同一个簇中的数据是有相似性的,而 不同簇中的数据是不同的,当聚类完毕之后,我们就要分别去研究每个簇中的样本都有什么样的性质,从而根据业 务需求制定不同的商业或者科技策略。这个听上去和我们在上周的评分卡案例中讲解的“分箱”概念有些类似,即我 们分箱的目的是希望,一个箱内的人有着相似的信用风险,而不同箱的人的信用风险差异巨大,以此来区别不同信 用度的人,因此我们追求“组内差异小,组间差异大”。聚类算法也是同样的目的,我们追求“簇内差异小,簇外差异 大”。而这个“差异“,由样本点到其所在簇的质心的距离来衡量。
其中,m为一个簇中样本的个数,j是每个样本的编号。这个公式被称为簇内平方和(cluster Sum of Square), 又叫做Inertia。而将一个数据集中的所有簇的簇内平方和相加,就得到了整体平方和(Total Cluster Sum of Square),又叫做total inertia。Total Inertia越小,代表着每个簇内样本越相似,聚类的效果就越好。因此 KMeans追求的是,求解能够让Inertia最小化的质心。实际上,在质心不断变化不断迭代的过程中,总体平方和 是越来越小的。我们可以使用数学来证明,当整体平方和最小的时候,质心就不再发生变化了。如此,K-Means的 求解过程,就变成了一个最优化问题。
解惑:Kmeans有损失函数吗? | |
---|---|
记得我们在逻辑回归中曾有这样的结论:损失函数本质是用来衡量模型的拟合效果的,只有有着求解参数需求的算法,才会有损失函数。Kmeans不求解什么参数,它的模型本质也没有在拟合数据,而是在对数据进行一 种探索。所以如果你去问大多数数据挖掘工程师,甚至是算法工程师,他们可能会告诉你说,K-Means不存在什么损失函数,Inertia更像是Kmeans的模型评估指标,而非损失函数。。。但我们类比过了Kmeans中的Inertia和逻辑回归中的损失函数的功能,我们发现它们确实非常相似。所以, 从“求解模型中的某种信息,用于后续模型的使用“这样的功能来看,我们可以认为Inertia是Kmeans中的损失函数,虽然这种说法并不严谨。。。对比来看,在决策树中,我们有衡量分类效果的指标准确度accuracy,我们不能通过最小化accuracy来求解 某个模型中需要的信息。因此决策树,KNN等算法,是绝对没有损失函数的 |
大家可以发现,我们的Inertia是基于欧几里得距离的计算公式得来的。实际上,我们也可以使用其他距离,每个距 离都有自己对应的Inertia。在过去的经验中,我们总结出不同距离所对应的质心选择方法和Inertia,在Kmeans 中,只要使用了正确的质心和距离组合,无论使用什么样的距离,都可以达到不错的聚类效果:
距离度量 | 质心 | Inertia |
---|---|---|
欧几里得距离 | 均值 | 最小化每个样本点到质心的欧式距离之和 |
曼哈顿距离 | 中位数 | 最小化每个样本点到质心的曼哈顿距离之和 |
余弦距离 | 均值 | 最小化每个样本点到质心的余弦距离之和 |
而这些组合,都可以由严格的数学证明来推导。在sklearn当中,我们无法选择使用的距离,只能使用欧式距离。 因此,我们也无需去担忧这些距离所搭配的质心选择是如何得来的了。
class sklearn.cluster.KMeans (n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precompute_distances=’auto’, verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm=’auto’)
n_clusters是KMeans中的k,表示着我们告诉模型我们要分几类。这是KMeans当中唯一一个必填的参数,默认为8 类,但通常我们的聚类结果会是一个小于8的结果。通常,在开始聚类之前,我们并不知道n_clusters究竟是多少, 因此我们要对它进行探索。
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
X, y = make_blobs(n_samples=500,n_features=2,centers=4,random_state=1)
fig, ax1 = plt.subplots(1)
ax1.scatter(X[:, 0], X[:, 1]
,marker='o'
,s=8 )
plt.show()
color = ["red","pink","orange","gray"]
fig, ax1 = plt.subplots(1)
for i in range(4):
ax1.scatter(X[y==i, 0], X[y==i, 1]
,marker='o'
,s=8
,c=color[i])
plt.show()
基于这个分布,我们来使用Kmeans进行聚类。首先,我们要猜测一下,这个数据中有几簇?
from sklearn.cluster import KMeans
n_clusters = 3
cluster = KMeans(n_clusters=n_clusters, random_state=0).fit(X)
y_pred = cluster.labels_
y_pred
pre = cluster.fit_predict(X)
pre == y_pred
centroid = cluster.cluster_centers_
centroid
centroid.shape
inertia = cluster.inertia_
inertia
color = ["red","pink","orange","gray"]
fig, ax1 = plt.subplots(1)
for i in range(guessK):
ax1.scatter(X[y_pred==i, 0], X[y_pred==i, 1]
,marker='o'
,s=8
,c=color[i]
)
ax1.scatter(centroid[:,0],centroid[:,1]
,marker="x"
,s=15
,c="black")
plt.show()
n_clusters = 4
cluster_ = KMeans(n_clusters=n_clusters, random_state=0).fit(X)
inertia_ = cluster_.inertia_
inertia_
面试高危问题:如何衡量聚类算法的效果? |
---|
聚类模型的结果不是某种标签输出,并且聚类的结果是不确定的,其优劣由业务需求或者算法需求来决定,并且没有永远的正确答案。那我们如何衡量聚类的效果呢? |
记得我们说过,KMeans的目标是确保“簇内差异小,簇外差异大”,我们就可以通过衡量簇内差异来衡量聚类的效 果。我们刚才说过,Inertia是用距离来衡量簇内差异的指标,因此,我们是否可以使用Inertia来作为聚类的衡量指 标呢?Inertia越小模型越好嘛。
可以,但是这个指标的缺点和极限太大。
首先,它不是有界的。我们只知道,Inertia是越小越好,是0最好,但我们不知道,一个较小的Inertia究竟有没有 达到模型的极限,能否继续提高。
第二,它的计算太容易受到特征数目的影响,数据维度很大的时候,Inertia的计算量会陷入维度诅咒之中,计算量 会爆炸,不适合用来一次次评估模型。
第三,Inertia对数据的分布有假设,它假设数据满足凸分布(即数据在二维平面图像上看起来是一个凸函数的样 子),并且它假设数据是各向同性的(isotropic),即是说数据的属性在不同方向上代表着相同的含义。但是现实 中的数据往往不是这样。所以使用Inertia作为评估指标,会让聚类算法在一些细长簇,环形簇,或者不规则形状的 流形时表现不佳:
那我们可以使用什么指标呢?来使用轮廓系数。
在99%的情况下,我们是对没有真实标签的数据进行探索,也就是对不知道真正答案的数据进行聚类。这样的聚 类,是完全依赖于评价簇内的稠密程度(簇内差异小)和簇间的离散程度(簇外差异大)来评估聚类的效果。其中 轮廓系数是最常用的聚类算法的评价指标。它是对每个样本来定义的,它能够同时衡量:
根据聚类的要求”簇内差异小,簇外差异大“,我们希望b永远大于a,并且大得越多越好。
单个样本的轮廓系数计算为:
很容易理解轮廓系数范围是(-1,1),其中值越接近1表示样本与自己所在的簇中的样本很相似,并且与其他簇中的样 本不相似,当样本点与簇外的样本更相似的时候,轮廓系数就为负。当轮廓系数为0时,则代表两个簇中的样本相 似度一致,两个簇本应该是一个簇。
如果一个簇中的大多数样本具有比较高的轮廓系数,则簇会有较高的总轮廓系数,则整个数据集的平均轮廓系数越 高,则聚类是合适的。如果许多样本点具有低轮廓系数甚至负值,则聚类是不合适的,聚类的超参数K可能设定得 太大或者太小。
在sklearn中,我们使用模块metrics中的类silhouette_score来计算轮廓系数,它返回的是一个数据集中,所有样 本的轮廓系数的均值。但我们还有同在metrics模块中的silhouette_sample,它的参数与轮廓系数一致,但返回的 是数据集中每个样本自己的轮廓系数。
我们来看看轮廓系数在我们自建的数据集上表现如何:
from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_samples
X
y_pred
silhouette_score(X,y_pred)
silhouette_score(X,cluster_.labels_)
silhouette_samples(X,y_pred)
轮廓系数有很多优点,它在有限空间中取值,使得我们对模型的聚类效果有一个“参考”。并且,轮廓系数对数据的 分布没有假设,因此在很多数据集上都表现良好。但它在每个簇的分割比较清洗时表现最好。但轮廓系数也有缺 陷,它在凸型的类上表现会虚高,比如基于密度进行的聚类,或通过DBSCAN获得的聚类结果,如果使用轮廓系数 来衡量,则会表现出比真实聚类效果更高的分数。
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
n_clusters = 4
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
ax1.set_xlim([-0.1, 1])
ax1.set_ylim([0, X.shape[0] + (n_clusters + 1) * 10])
clusterer = KMeans(n_clusters=n_clusters, random_state=10).fit(X) cluster_labels = clusterer.labels_
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i)/n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper)
,ith_cluster_silhouette_values ,facecolor=color
,alpha=0.7
)
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
y_lower = y_upper + 10
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([])
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1],marker='o' #点的形状 ,s=8 #点的大小 ,c=colors )
centers = clusterer.cluster_centers_
ax2.scatter(centers[:, 0], centers[:, 1], marker='x', c="red", alpha=1, s=200)
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),fontsize=14, fontweight='bold')
plt.show()
将上述过程包装成一个循环,可以得到:
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
for n_clusters in [2,3,4,5,6,7]:
n_clusters = n_clusters
fig, (ax1, ax2) = plt.subplots(1, 2) fig.set_size_inches(18, 7)
ax1.set_xlim([-0.1, 1])
ax1.set_ylim([0, X.shape[0] + (n_clusters + 1) * 10])
clusterer = KMeans(n_clusters=n_clusters, random_state=10).fit(X)
cluster_labels = clusterer.labels_
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
ith_cluster_silhouette_values =
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i)/n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper)
,ith_cluster_silhouette_values ,facecolor=color
,alpha=0.7)
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
y_lower = y_upper + 10
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([])
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
colors = cm.nipy_spectral(cluster_labels.astype(float) /n_clusters)
ax2.scatter(X[:, 0], X[:, 1],marker='o' #点的形状 ,s=8 #点的大小 ,c=colors)
centers = clusterer.cluster_centers_ ax2.scatter(centers[:, 0],
centers[:, 1], marker='x',
c="red", alpha=1, s=200)
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(("Silhouette analysis for KMeans clustering on sample data " "with n_clusters = %d" % n_clusters),fontsize=14,fontweight='bold')
plt.show()