- 线性回归(1)
zidea
MachineLearninginMarketing感谢李宏毅《回归-案例研究》部分内容为听取李宏毅老师讲座的笔记,也融入了自己对机器学习理解,个人推荐李宏毅老师的机器学习系列课程,尤其对于初学者强烈推荐。课程设计相对其他课程要容易理解。在机器学习中算法通常分为回归和分类两种,今天我们探讨什么线性回归。以及如何设计一个线性回归模型。什么回归简单理解通过数据最终预测出来一个值。回归问题的实例就是找到
- 从零开始学Python系列课程第07课:Python的输入和输出函数
HerrFu
Python基础python开发语言学习
在程序的执行过程中,可能我们有需要与程序进行交互的地方,那么这些交互应该怎样去编写,是我们需要思考的问题,为此Python提供了输入和输出函数,以便我们和程序之间的简单交互操作。一、输入函数——input我们借助input函数,能够将我们所想的数据传入到程序中,如下例子:str_1=input()此时程序执行时便会要求我们输入内容,输入的内容会被保存到变量str_1中,另外,无论输入函数input
- 从零开始学Python系列课程第02课:Python环境搭建
HerrFu
Python基础python开发语言学习
学习一门新的编程语言,少不了安装各种各样的软件和配置各种各样的环境,为此,给学习本门课程的同学准备了一份环境安装指南,接下来请认真食用。一、安装包下载Python官网:https://www.python.org/上述界面为Python官网首页,在Downloads选项可以下载到Windows、Mac、Linux的Python安装程序或二进制文件。大家可以自行查看官网内容获取Python的安装包,
- 从零开始学Python系列课程第04课:编写并运行Python程序
HerrFu
Python基础pythonpycharm开发语言
在前几篇文章中,我们已经了解了Python语言、安装了运行和编写Python程序所必需的环境、创建了一个新的Python项目,相信大家已经迫不及待的想开始自己的Python编程之旅了。一、创建Python文件书接上文,在讲述了PyCharm如何创建项目之后,还不能直接写代码,还需要创建一个能够承载Python代码的文件,这个文件的后缀名为.py,请看下方截图,如何创建:在前面创建好的Python项
- 从零开始学Python系列课程第01课:Python认知
HerrFu
Python基础python开发语言学习
学习一门编程语言,我们首先要知道这门语言的身世,这样才能够更好的帮助我们了解和认识它!Python是由荷兰数学和计算机科学研究学会的GuidovanRossum(吉多·范罗苏姆,以下简称:吉多大爷)于1990年初设计,准备用Python作为一门叫做ABC语言的替代品。ABC语言ABC语言是NWO(荷兰科学研究组织)旗下CWI(荷兰国家数学与计算机科学研究中心)的LeoGrurts、LambertM
- 从零开始学Python系列课程第14课:Python中的循环结构(下)
HerrFu
Python基础python开发语言学习
在本篇文章中,我们对上文讲过的循环结构做少许补充,除去for-in循环和while循环,其实还存在for-else结构和while-else结构。只是这在编程语言界,Python属于独一份了,独一份循环结构还可以与else关键字一起使用的编程语言,不过这种用法哪怕在Python中也是比较小众。哪怕用到,绝大部分场景也是给到for-else结构,今天我们以for-else结构为例,为大家讲解如何使用
- 从零开始学Python系列课程第16课:Python常见容器型数据类型介绍
HerrFu
Python基础python开发语言学习
Python中有个容器的知识点非常重要,一定要认真学习。我们把可以包含其他数据的数据类型,称之为容器,我们将Python中常用的容器划分为三种:内容连续、有顺序、可以使用下标索引的一类数据容器,我们称之为序列,Python中的列表、字符串、元组都属于序列。在数学里,映射是一个术语,指两个数据集中的元素存在相互对应的关系,称为映射,Python的字典中的元素就具有这样的对应关系。既没有序列的特性,也
- 从零开始学Python系列课程第13课:Python中的循环结构(上)
HerrFu
Python基础python开发语言学习
一、循环结构的应用场景及分类我们在编写程序时,一定会遇到需要重复执行某些指令的场景。举一个简单的例子,在前面讲分支结构时以游戏通关为例,如果第一关结束时分值不够则通关失败需要重新闯关,重新闯关这就是一个重复性的动作,类似的还有很多相似场景,代入编程中就可以使用循环来解决这类问题,这就是我们今天要讲的“循环结构”。所谓循环结构,就是程序中控制某条或某些指令重复执行的结构。在Python中构造循环结构
- 从零开始学Python系列课程第15课:range 方法详解
HerrFu
Python基础python开发语言学习
在循环结构上篇讲述for-in循环时,有一个range方法的知识点没给大家讲,本篇文章我们单独给大家做一个详细讲解。range方法的作用就是根据给定的start、stop、step三个参数,生成一个包含有规律整数的容器。以下是range的语法规则:range(start,stop,step)我们对这几个参数做出解释:可以理解start为左闭区间,stop为右开区间,step为等差序列的差;rang
- 人工智能 python入门体验课_Python系列课程——人工智能篇简单入门
weixin_39536427
人工智能python入门体验课
1、基础篇——基于Python的机器学习现在大热、为未来计算机科学发展方向的机器学习了解多少呢?下面推荐的这个内容比较适合小白,如果数学、模型理论基础不扎实也没关系,可以掌握Python编程语言基本可以轻松学习~例如利用Python编程语言实现线性分类器、支持向量机、朴素贝叶斯等经典机器学习模型来解决诸如肿瘤良恶性预测、手写体识别、泰坦尼克号生还预测等实际问题。并就模型本身泛化力问题(过拟合、欠拟
- 机器学习笔记03_机器学习基本概念(下)
三木今天学习了嘛
机器学习机器学习深度学习人工智能
学习视频:[中英字幕]吴恩达机器学习系列课程学习资料:https://github.com/fengdu78/Coursera-ML-AndrewNg-NotesGitHub不好用的话,我在CSDN资源区也上传了开源资料,0积分下载,期待和大家一起进步!文章目录12聚类Clustering12.1无监督学习UnsupervisedLearning12.2K-均值算法K-MeansAlgorithm
- 吴恩达《机器学习》1-4:无监督学习
不吃花椒的兔酱
机器学习机器学习学习笔记
一、无监督学习无监督学习就像你拿到一堆未分类的东西,没有标签告诉你它们是什么,然后你的任务是自己找出它们之间的关系或者分成不同的组,而不依赖于任何人给你关于这些东西的指导。以聚类为例,无监督学习算法可以将数据点分成具有相似特征的群组,而不需要提前告知每个数据点属于哪个群组。二、聚类算法将数据集中的对象分成具有相似特征或属性的组,这些组通常称为簇。参考资料:[中英字幕]吴恩达机器学习系列课程黄海广博
- 【李宏毅机器学习·学习笔记】Deep Learning General Guidance
MilkLeong
李宏毅机器学习Python机器学习机器学习深度学习学习
本节课可视为机器学习系列课程的一个前期攻略,这节课主要对MachineLearning的框架进行了简单的介绍;并以trainingdata上的loss大小为切入点,介绍了几种常见的在模型训练的过程中容易出现的情况。课程视频:Youtube:https://www.youtube.com/watch?v=WeHM2xpYQpw课程PPT:https://view.officeapps.live.co
- 机器学习比较好的视频资源
无敌三角猫
深度学习人工智能机器学习
吴恩达,经典入门课程。[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibiliwww.bilibili.com/video/BV164411b7dx?spm_id_from=333.999.0.0正在上传…重新上传取消[双语字幕]吴恩达深度学习deeplearning.ai_哔哩哔哩_bilibiliwww.bilibili.com/video/BV1FT4y1E74V?from=searc
- python网课人工智能,Python系列课程——人工智能篇简单入门
爬山小虎哥
python网课人工智能
1、基础篇——基于Python的机器学习>>>>>>现在大热、为未来计算机科学发展方向的机器学习了解多少呢?下面推荐的这个内容比较适合小白,如果数学、模型理论基础不扎实也没关系,可以掌握Python编程语言基本可以轻松学习~例如利用Python编程语言实现线性分类器、支持向量机、朴素贝叶斯等经典机器学习模型来解决诸如肿瘤良恶性预测、手写体识别、泰坦尼克号生还预测等实际问题。并就模型本身泛化力问题(
- 【经典】吴恩达——机器学习笔记001
superME1226
机器学习机器学习算法
【经典】吴恩达——机器学习笔记001机器学习(MachineLearning)笔记001学习地址:[中英字幕]吴恩达机器学习系列课程文字版参考及PPT来源:Coursera-ML-AndrewNg-Notes听从学长的建议,将吴恩达教授的DL和ML视频作为CV入门学习,本博客为个人学习笔记,旨在记录学习所得,欢迎小伙伴们一起交流学习,批评指正!第二章:【经典】吴恩达——机器学习笔记002课程总述M
- 【CV】吴恩达机器学习课程笔记第18章
Fannnnf
吴恩达机器学习课程笔记机器学习人工智能
本系列文章如果没有特殊说明,正文内容均解释的是文字上方的图片机器学习|Coursera吴恩达机器学习系列课程_bilibili目录18应用案例:照片OCR18-1问题描述与流程(pipeline)18-2滑动窗口(slidingwindows)分类器18-3获取大量数据和人工数据合成18-4上限分析:下一步要做流水线中的哪一个18应用案例:照片OCR18-1问题描述与流程(pipeline)1.找
- 吴恩达机器学习系列课程笔记——第五章:Octave教程(Octave Tutorial)
Lishier99
机器学习机器学习人工智能
提示:这章选学,可以去学python,第六节可以看看。5.1基本操作https://www.bilibili.com/video/BV164411b7dx?p=26本章学习以种编程语言:Octave语言。你能够用它来非常迅速地实现这门课中我们已经学过的,或者将要学的机器学习算法。过去我一直尝试用不同的编程语言来教授机器学习,包括C++、Java、Python、Numpy和Octave。我发现当使用
- 吴恩达机器学习系列课程笔记——第十四章:降维(Dimensionality Reduction)
Lishier99
机器学习机器学习人工智能算法学习
14.1动机一:数据压缩https://www.bilibili.com/video/BV164411b7dx?p=79这个视频,我想开始谈论第二种类型的无监督学习问题,称为降维。有几个不同的的原因使你可能想要做降维。一是数据压缩,后面我们会看了一些视频后,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法。但首先,让我们谈论降维是什么。作为一种生动的
- 吴恩达机器学习系列课程笔记——第十一章:机器学习系统的设计(Machine Learning System Design)
Lishier99
机器学习机器学习人工智能算法
11.1首先要做什么https://www.bilibili.com/video/BV164411b7dx?p=65在接下来的视频中,我将谈到机器学习系统的设计。这些视频将谈及在设计复杂的机器学习系统时,你将遇到的主要问题。同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议。下面的课程的的数学性可能不是那么强,但是我认为我们将要讲到的这些东西是非常有用的,可能在构建大型的机器学习系
- python数据分析、整理、汇总展示_python-数据分析与展示(Numpy、matplotlib、pandas)---2...
weixin_39525118
python数据分析整理汇总展示
笔记内容整理自mooc上北京理工大学嵩天老师python系列课程数据分析与展示,本人小白一枚,如有不对,多加指正1.python自带的图像库PIL1.1常用APIImage.open()Image.fromarray()im.save()convert('L')b.astype('uint8')(这个API用于处理后的数组改变元素的数据类型,科学计算python不同于C++等编程语言,操作之后,数
- 吴恩达机器学习课程笔记:监督学习、无监督学习
Uncertainty!!
机器学习基础监督学习无监督学习
1.吴恩达机器学习课程笔记:监督学习、无监督学习吴恩达机器学习系列课程:监督学习吴恩达机器学习系列课程:无监督学习仅作为个人学习笔记,若各位大佬发现错误请指正机器学习的学习算法:监督学习、无监督学习、半监督学习(监督与无监督的结合)、强化学习监督学习与无监督学习的根本区别:监督学习的数据既有特征又有标签,而非监督学习的数据中只有特征而没有标签。(例如:身高属于特征,标签是高或矮)左侧为监督学习针对
- 机器学习(正在更新)
小小怪将军!
机器学习机器学习深度学习
目录自己疑问-----容易错误的点:训练集、验证集、测试集训练集验证集测试集以下视频地址:[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibili第二章2.1线性回归2-2代价函数(类似误差一样)2.5-2.6梯度下降算法,梯度下降算法理解2.3线性回归的梯度下降/Batch梯度下降第四章(正规方程与梯度下降一样是为了求满足条件的(塞塔o))4.1多变量线性回归假设函数4.2多元(多变量)梯
- 机器学习 笔记(继续更新)
M有在认真学习
机器学习python
学习内容跟随“吴恩达机器学习系列课程”。目录1.具有一个特征的学习算法(linearregression线性回归),代价函数编辑的由来,等高图2.可以最小化代价函数的梯度下降法(gradientdescent),以及对于编辑、学习率编辑、导数项的通俗解释3.具有多个变量或特征的学习算法(multivariatelinearregression多元线性回归),它的假设函数和的迭代4.将gradien
- 吴恩达---机器学习的流程(持续更新)
M有在认真学习
机器学习回归逻辑回归
参考:吴恩达机器学习的视频视频链接:[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibili本文用于我自己的内容总结以及层次理解。学习流程:1.具有一个特征的学习算法(linearregression线性回归),代价函数编辑的由来,等高图2.可以最小化代价函数的梯度下降法(gradientdescent),以及对于编辑、学习率编辑、导数项的通俗解释3.具有多个变量或特征的学习算法(multi
- 机器学习算法笔记(1)——逻辑斯蒂回归Logistic处理二分类任务
念旧NiceJeo
机器学习算法笔记算法机器学习python可视化
逻辑斯蒂回归LogisticRegressor处理二分类任务一.逻辑斯蒂回归1.模型2.代价函数(损失函数)3.优化算法二.代码实现1.二维二分类2.多维二分类本系列为观看吴恩达老师的[中英字幕]吴恩达机器学习系列课程做的课堂笔记。图片来自视频截图。不得不说,看了老师的视频真的学到了很多。即使数学不好的同志们也可以看懂,真的可谓是细致入微了。一.逻辑斯蒂回归1.模型学过深度学习的同志们对这张图一定
- 【机器学习(九)】大数据集及其梯度下降算法
趴抖
机器学习算法人工智能
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P102-P105。大数据集假定你的训练集的大小m为100000000。如果你想训练一个线性回归模型或是一个逻辑回归模型。其梯度下降规则如下:当m的值为100000000时,就需要对一亿项进行求和。这是为了计算导数项以及演算单步下降。因为计算超过一亿项的代价太高了。我们容易思考:为什么不能在这一亿项中取一千个样本的子集,然后仅用
- 【机器学习(八)】神经网络进阶
趴抖
机器学习神经网络逻辑回归
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P50-P56。代价函数假设我们有一个与下图类似的神经网络结构,再假设我们有一个像这样的训练集,其中有m组训练样本(x(i),y(I))。用L来表示神经网络结构的总层数:我们将会考虑两种分类问题:二元分类问题这里的y只能为0或1,在这种情况下,我们会有一个输出单元即K=1。同时神经网络的输出结果h(x)会是一个实数多类别分类问题
- 【机器学习(四)】分类问题与logistic回归模型
趴抖
机器学习回归分类
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P32-P36、P38。情景引入在前面几篇文章中,我们提到了判断邮件是否为垃圾邮件的例子,以及良性与恶性肿瘤的例子。在所有的这些问题中,我们尝试预测的变量y,都是可以有两个取值的变量——0或1。我们用0来表示的这一类还可以叫做”负类“,用1来表示的这一类还可以叫做正类。现在我们要从只包含0和1两类的分类问题开始。假设陈述——lo
- 【机器学习(六)】过拟合问题及正则化
趴抖
机器学习人工智能逻辑回归
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P39-P42。过拟合问题下面是一个用线性回归来预测房价的例子:第一种拟合没有很好地拟合训练集,称其为欠拟合。或者说,这个算法具有高偏差。第二种恰当地拟合了训练集。第三种拟合似乎很好地拟合了训练集,代价函数实际上可能非常接近于0,毕竟它通过了所有的数据点,但这是一条扭曲的,不停上下波动的曲线。事实上我们并不认为它是一个预测房价的
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name