Python学习笔记:第三方模块2

前言

最近在学习深度学习,已经跑出了几个模型,但Pyhton的基础不够扎实,因此,开始补习Python了,大家都推荐廖雪峰的课程,因此,开始了学习,但光学有没有用,还要和大家讨论一下,因此,写下这些帖子,廖雪峰的课程连接在这里:廖雪峰
Python的相关介绍,以及它的历史故事和运行机制,可以参见这篇:python介绍
Python的安装可以参见这篇:Python安装
Python的运行模式以及输入输出可以参见这篇:Python IO
Python的基础概念介绍,可以参见这篇:Python 基础
Python字符串和编码的介绍,可以参见这篇:Python字符串与编码
Python基本数据结构:list和tuple介绍,可以参见这篇:Python list和tuple
Python控制语句介绍:ifelse,可以参见这篇:Python 条件判断
Python控制语句介绍:循环实现,可以参见这篇:Python循环语句
Python数据结构:dict和set介绍Python数据结构dict和set
Python函数相关:Python函数
Python高阶特性:Python高级特性
Python高阶函数:Python高阶函数
Python匿名函数:Python匿名函数
Python装饰器:Python装饰器
Python偏函数:Python偏函数
Python模块:Python模块
Python面向对象编程(1):Python面向对象
Python面向对象编程(2):Python面向对象(2)
Python面向对象编程(3):Python面向对象(3)
Python面向对象编程(4):Pyhton面向对象(4)
Python面向对象高级编程(上):Python面向对象高级编程(上)
Python面向对象高级编程(中上):Python面向对象高级编程(中上)
Python面向对象高级编程(中下):Python面向对象高级编程(中下)
Python面向对象高级编程(完):Python面向对象高级编程(完)
Python错误调试(起):Python调试:起
Python错误调试(承):Python调试:承
Python错误调试(转):Python调试:转
Python错误调试(合):python调试:合
Python文件IO编程:Python文件IO
Python文件IO编程2:Python文件IO2
Python文件IO编程3:PYthon文件IO3
Python进程和线程(起):Python进程和线程起
Python进程和线程(承):Python进程和线程承
Python进程和线程(转):Python进程和线程转
Python进程和线程(合):Python进程和线程合
Python正则表达式:Python正则表达式
Python学习笔记:常用内建模块1:Python学习笔记:常用内建模块1
Python学习笔记:常用内建模块2:Python学习笔记:常用内建模块2
Python学习笔记:常用内建模块3:Python学习笔记:常用内建模块3
Python学习笔记:常用内建模块4:Python学习笔记: 常用内建模块4
Python学习笔记:常用内建模块5:Python学习笔记: 常用内建模块5
Python学习笔记:常用内建模块6:Python学习笔记:常用内建模块6
Python学习笔记:第三方模块1:Python常用第三方模块

目录

  • 前言
  • 目录
  • Chardet
    • 安装chardet
    • 使用chardet
  • psutil
    • 安装psutil
    • 获取CPU信息
    • 获取内存信息
    • 获取磁盘信息
    • 获取网络信息
    • 获取进程信息
    • 小结
  • virtualenv
    • 小结

Chardet

字符串编码一直是令人非常头疼的问题,尤其是我们在处理一些不规范的第三方网页的时候。虽然Python提供了Unicode表示的str和bytes两种数据类型,并且可以通过encode()和decode()方法转换,但是,在不知道编码的情况下,对bytes做decode()不好做。
对于未知编码的bytes,要把它转换成str,需要先“猜测”编码。猜测的方式是先收集各种编码的特征字符,根据特征字符判断,就能有很大概率“猜对”。
当然,我们肯定不能从头自己写这个检测编码的功能,这样做费时费力。chardet这个第三方库正好就派上了用场。用它来检测编码,简单易用。

安装chardet

如果安装了Anaconda,chardet就已经可用了。否则,需要在命令行下通过pip安装:

$ pip install chardet

如果遇到Permission denied安装失败,请加上sudo重试。

使用chardet

当我们拿到一个bytes时,就可以对其检测编码。用chardet检测编码,只需要一行代码:

>>> chardet.detect(b'Hello, world!')
{'encoding': 'ascii', 'confidence': 1.0, 'language': ''}

检测出的编码是ascii,注意到还有个confidence字段,表示检测的概率是1.0(即100%)。

我们来试试检测GBK编码的中文:

>>> data = '离离原上草,一岁一枯荣'.encode('gbk')
>>> chardet.detect(data)
{'encoding': 'GB2312', 'confidence': 0.7407407407407407, 'language': 'Chinese'}

检测的编码是GB2312,注意到GBK是GB2312的超集,两者是同一种编码,检测正确的概率是74%,language字段指出的语言是’Chinese’。

对UTF-8编码进行检测:

>>> data = '离离原上草,一岁一枯荣'.encode('utf-8')
>>> chardet.detect(data)
{'encoding': 'utf-8', 'confidence': 0.99, 'language': ''}

我们再试试对日文进行检测:

>>> data = '最新の主要ニュース'.encode('euc-jp')
>>> chardet.detect(data)
{'encoding': 'EUC-JP', 'confidence': 0.99, 'language': 'Japanese'}

可见,用chardet检测编码,使用简单。获取到编码后,再转换为str,就可以方便后续处理。

chardet支持检测的编码列表请参考官方文档支持的码。

psutil

用Python来编写脚本简化日常的运维工作是Python的一个重要用途。在Linux下,有许多系统命令可以让我们时刻监控系统运行的状态,如ps,top,free等等。要获取这些系统信息,Python可以通过subprocess模块调用并获取结果。但这样做显得很麻烦,尤其是要写很多解析代码。

在Python中获取系统信息的另一个好办法是使用psutil这个第三方模块。顾名思义,psutil = process and system utilities,它不仅可以通过一两行代码实现系统监控,还可以跨平台使用,支持Linux/UNIX/OSX/Windows等,是系统管理员和运维小伙伴不可或缺的必备模块。

安装psutil

如果安装了Anaconda,psutil就已经可用了。否则,需要在命令行下通过pip安装:

$ pip install psutil

如果遇到Permission denied安装失败,请加上sudo重试。

获取CPU信息

我们先来获取CPU的信息:

>>> import psutil
>>> psutil.cpu_count() # CPU逻辑数量
4
>>> psutil.cpu_count(logical=False) # CPU物理核心
2
# 2说明是双核超线程, 4则是4核非超线程

统计CPU的用户/系统/空闲时间:

>>> psutil.cpu_times()
scputimes(user=10963.31, nice=0.0, system=5138.67, idle=356102.45)

再实现类似top命令的CPU使用率,每秒刷新一次,累计10次:

>>> for x in range(10):
...     psutil.cpu_percent(interval=1, percpu=True)
... 
[14.0, 4.0, 4.0, 4.0]
[12.0, 3.0, 4.0, 3.0]
[8.0, 4.0, 3.0, 4.0]
[12.0, 3.0, 3.0, 3.0]
[18.8, 5.1, 5.9, 5.0]
[10.9, 5.0, 4.0, 3.0]
[12.0, 5.0, 4.0, 5.0]
[15.0, 5.0, 4.0, 4.0]
[19.0, 5.0, 5.0, 4.0]
[9.0, 3.0, 2.0, 3.0]

获取内存信息

使用psutil获取物理内存和交换内存信息,分别使用:

>>> psutil.virtual_memory()
svmem(total=8589934592, available=2866520064, percent=66.6, used=7201386496, free=216178688, active=3342192640, inactive=2650341376, wired=1208852480)
>>> psutil.swap_memory()
sswap(total=1073741824, used=150732800, free=923009024, percent=14.0, sin=10705981440, sout=40353792)

返回的是字节为单位的整数,可以看到,总内存大小是8589934592 = 8 GB,已用7201386496 = 6.7 GB,使用了66.6%。

而交换区大小是1073741824 = 1 GB。

获取磁盘信息

可以通过psutil获取磁盘分区、磁盘使用率和磁盘IO信息:
···

psutil.disk_partitions() # 磁盘分区信息
[sdiskpart(device=’/dev/disk1’, mountpoint=’/’, fstype=’hfs’, opts=’rw,local,rootfs,dovolfs,journaled,multilabel’)]
psutil.disk_usage(‘/’) # 磁盘使用情况
sdiskusage(total=998982549504, used=390880133120, free=607840272384, percent=39.1)
psutil.disk_io_counters() # 磁盘IO
sdiskio(read_count=988513, write_count=274457, read_bytes=14856830464, write_bytes=17509420032, read_time=2228966, write_time=1618405)
···
可以看到,磁盘’/’的总容量是998982549504 = 930 GB,使用了39.1%。文件格式是HFS,opts中包含rw表示可读写,journaled表示支持日志。

获取网络信息

psutil可以获取网络接口和网络连接信息:

>>> psutil.net_io_counters() # 获取网络读写字节/包的个数
snetio(bytes_sent=3885744870, bytes_recv=10357676702, packets_sent=10613069, packets_recv=10423357, errin=0, errout=0, dropin=0, dropout=0)
>>> psutil.net_if_addrs() # 获取网络接口信息
{
  'lo0': [snic(family=2>, address='127.0.0.1', netmask='255.0.0.0'), ...],
  'en1': [snic(family=2>, address='10.0.1.80', netmask='255.255.255.0'), ...],
  'en0': [...],
  'en2': [...],
  'bridge0': [...]
}
>>> psutil.net_if_stats() # 获取网络接口状态
{
  'lo0': snicstats(isup=True, duplex=0>, speed=0, mtu=16384),
  'en0': snicstats(isup=True, duplex=0>, speed=0, mtu=1500),
  'en1': snicstats(...),
  'en2': snicstats(...),
  'bridge0': snicstats(...)
}

要获取当前网络连接信息,使用net_connections():

>>> psutil.net_connections()
Traceback (most recent call last):
  ...
PermissionError: [Errno 1] Operation not permitted

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  ...
psutil.AccessDenied: psutil.AccessDenied (pid=3847)

你可能会得到一个AccessDenied错误,原因是psutil获取信息也是要走系统接口,而获取网络连接信息需要root权限,这种情况下,可以退出Python交互环境,用sudo重新启动:

$ sudo python3
Password: ******
Python 3.6.3 ... on darwin
Type "help", ... for more information.
>>> import psutil
>>> psutil.net_connections()
[
    sconn(fd=83, family=30>, type=1, laddr=addr(ip='::127.0.0.1', port=62911), raddr=addr(ip='::127.0.0.1', port=3306), status='ESTABLISHED', pid=3725),
    sconn(fd=84, family=30>, type=1, laddr=addr(ip='::127.0.0.1', port=62905), raddr=addr(ip='::127.0.0.1', port=3306), status='ESTABLISHED', pid=3725),
    sconn(fd=93, family=30>, type=1, laddr=addr(ip='::', port=8080), raddr=(), status='LISTEN', pid=3725),
    sconn(fd=103, family=30>, type=1, laddr=addr(ip='::127.0.0.1', port=62918), raddr=addr(ip='::127.0.0.1', port=3306), status='ESTABLISHED', pid=3725),
    sconn(fd=105, family=30>, type=1, ..., pid=3725),
    sconn(fd=106, family=30>, type=1, ..., pid=3725),
    sconn(fd=107, family=30>, type=1, ..., pid=3725),
    ...
    sconn(fd=27, family=2>, type=2, ..., pid=1)
]

获取进程信息

通过psutil可以获取到所有进程的详细信息:

>>> psutil.pids() # 所有进程ID
[3865, 3864, 3863, 3856, 3855, 3853, 3776, ..., 45, 44, 1, 0]
>>> p = psutil.Process(3776) # 获取指定进程ID=3776,其实就是当前Python交互环境
>>> p.name() # 进程名称
'python3.6'
>>> p.exe() # 进程exe路径
'/Users/michael/anaconda3/bin/python3.6'
>>> p.cwd() # 进程工作目录
'/Users/michael'
>>> p.cmdline() # 进程启动的命令行
['python3']
>>> p.ppid() # 父进程ID
3765
>>> p.parent() # 父进程
3765, name='bash') at 4503144040>
>>> p.children() # 子进程列表
[]
>>> p.status() # 进程状态
'running'
>>> p.username() # 进程用户名
'michael'
>>> p.create_time() # 进程创建时间
1511052731.120333
>>> p.terminal() # 进程终端
'/dev/ttys002'
>>> p.cpu_times() # 进程使用的CPU时间
pcputimes(user=0.081150144, system=0.053269812, children_user=0.0, children_system=0.0)
>>> p.memory_info() # 进程使用的内存
pmem(rss=8310784, vms=2481725440, pfaults=3207, pageins=18)
>>> p.open_files() # 进程打开的文件
[]
>>> p.connections() # 进程相关网络连接
[]
>>> p.num_threads() # 进程的线程数量
1
>>> p.threads() # 所有线程信息
[pthread(id=1, user_time=0.090318, system_time=0.062736)]
>>> p.environ() # 进程环境变量
{'SHELL': '/bin/bash', 'PATH': '/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:...', 'PWD': '/Users/michael', 'LANG': 'zh_CN.UTF-8', ...}
>>> p.terminate() # 结束进程
Terminated: 15 <-- 自己把自己结束了

和获取网络连接类似,获取一个root用户的进程需要root权限,启动Python交互环境或者.py文件时,需要sudo权限。

psutil还提供了一个test()函数,可以模拟出ps命令的效果:

$ sudo python3
Password: ******
Python 3.6.3 ... on darwin
Type "help", ... for more information.
>>> import psutil
>>> psutil.test()
USER         PID %MEM     VSZ     RSS TTY           START    TIME  COMMAND
root           0 24.0 74270628 2016380 ?             Nov18   40:51  kernel_task
root           1  0.1 2494140    9484 ?             Nov18   01:39  launchd
root          44  0.4 2519872   36404 ?             Nov18   02:02  UserEventAgent
root          45    ? 2474032    1516 ?             Nov18   00:14  syslogd
root          47  0.1 2504768    8912 ?             Nov18   00:03  kextd
root          48  0.1 2505544    4720 ?             Nov18   00:19  fseventsd
_appleeven    52  0.1 2499748    5024 ?             Nov18   00:00  appleeventsd
root          53  0.1 2500592    6132 ?             Nov18   00:02  configd
...

小结

psutil使得Python程序获取系统信息变得易如反掌。
psutil还可以获取用户信息、Windows服务等很多有用的系统信息,具体请参考psutil的官网:https://github.com/giampaolo/psutil

virtualenv

在开发Python应用程序的时候,系统安装的Python3只有一个版本:3.4。所有第三方的包都会被pip安装到Python3的site-packages目录下。
如果我们要同时开发多个应用程序,那这些应用程序都会共用一个Python,就是安装在系统的Python 3。如果应用A需要jinja 2.7,而应用B需要jinja 2.6怎么办?
这种情况下,每个应用可能需要各自拥有一套“独立”的Python运行环境。virtualenv就是用来为一个应用创建一套“隔离”的Python运行环境。

首先,我们用pip安装virtualenv:

$ pip3 install virtualenv

然后,假定我们要开发一个新的项目,需要一套独立的Python运行环境,可以这么做:

第一步,创建目录:

Mac:~ michael$ mkdir myproject
Mac:~ michael$ cd myproject/
Mac:myproject michael$

第二步,创建一个独立的Python运行环境,命名为venv:

Mac:myproject michael$ virtualenv --no-site-packages venv
Using base prefix '/usr/local/.../Python.framework/Versions/3.4'
New python executable in venv/bin/python3.4
Also creating executable in venv/bin/python
Installing setuptools, pip, wheel...done.

命令virtualenv就可以创建一个独立的Python运行环境,我们还加上了参数–no-site-packages,这样,已经安装到系统Python环境中的所有第三方包都不会复制过来,这样,我们就得到了一个不带任何第三方包的“干净”的Python运行环境。

新建的Python环境被放到当前目录下的venv目录。有了venv这个Python环境,可以用source进入该环境:

Mac:myproject michael$ source venv/bin/activate
(venv)Mac:myproject michael$

注意到命令提示符变了,有个(venv)前缀,表示当前环境是一个名为venv的Python环境。

下面正常安装各种第三方包,并运行python命令:

(venv)Mac:myproject michael$ pip install jinja2
...
Successfully installed jinja2-2.7.3 markupsafe-0.23
(venv)Mac:myproject michael$ python myapp.py
...

在venv环境下,用pip安装的包都被安装到venv这个环境下,系统Python环境不受任何影响。也就是说,venv环境是专门针对myproject这个应用创建的。

退出当前的venv环境,使用deactivate命令:

(venv)Mac:myproject michael$ deactivate 
Mac:myproject michael$

此时就回到了正常的环境,现在pip或python均是在系统Python环境下执行。

完全可以针对每个应用创建独立的Python运行环境,这样就可以对每个应用的Python环境进行隔离。

virtualenv是如何创建“独立”的Python运行环境的呢?原理很简单,就是把系统Python复制一份到virtualenv的环境,用命令source venv/bin/activate进入一个virtualenv环境时,virtualenv会修改相关环境变量,让命令python和pip均指向当前的virtualenv环境。

小结

virtualenv为应用提供了隔离的Python运行环境,解决了不同应用间多版本的冲突问题。

你可能感兴趣的:(Python,Python学习笔记)