Spark Streaming从Kafka自定义时间间隔内实时统计行数、TopN并将结果存到hbase中

一、统计kafka的topic在10秒间隔内生产数据的行数并将统计结果存入到hbase中
先在hbase中建立相应的表:
create 'linecount','count'

开启kafka集群并建立相应的topic:
[hadoop@h71 kafka_2.10-0.8.2.0]$ bin/kafka-topics.sh --create --zookeeper h71:2181,h72:2181,h73:2181 --replication-factor 3 --partitions 2 --topic test

启动生产者:

[hadoop@h71 kafka_2.10-0.8.2.0]$ bin/kafka-console-producer.sh --broker-list h71:9092,h72:9092,h73:9092 --topic test 


java代码:

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;

import kafka.serializer.StringDecoder;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;

import scala.Tuple2;

public class KafkaDirectWordCountPersistHBase {
	private static String beginTime = null;
	private static int cishu = 0;
	private static int interval = 0;
	private static String rowkey = null;
	public static Configuration getConfiguration() {
		Configuration conf = HBaseConfiguration.create();
		conf.set("hbase.rootdir", "hdfs://192.168.8.71:9000/hbase");
		conf.set("hbase.zookeeper.quorum", "192.168.8.71");
		return conf;
	}
	public static void insert(String tableName, String rowKey, String family,
			String quailifer, String value) {
		try {
			HTable table = new HTable(getConfiguration(), tableName);
			Put put = new Put(rowKey.getBytes());
			put.add(family.getBytes(), quailifer.getBytes(), value.getBytes()) ;
			table.put(put);
		} catch (Exception e) {
			e.printStackTrace();
		}
	}
	
	public static void main(String[] args) {
		SparkConf conf = new SparkConf().setAppName("wordcount").setMaster("local[2]");
		//这里设置每多少秒计算一次,我这里设置的间隔是10秒
		interval = 10;
//		JavaStreamingContext jssc = new JavaStreamingContext(conf, new Duration(10000));	//毫秒
		JavaStreamingContext jssc = new JavaStreamingContext(conf,Durations.seconds(interval));	//秒
		// 首先要创建一份kafka参数map
		Map kafkaParams = new HashMap();
		// 我们这里是不需要zookeeper节点的,所以我们这里放broker.list
		kafkaParams.put("metadata.broker.list", "192.168.8.71:9092,192.168.8.72:9092,192.168.8.73:9092");
		// 然后创建一个set,里面放入你要读取的Topic,这个就是我们所说的,它给你做的很好,可以并行读取多个topic
		Set topics = new HashSet();
		topics.add("test");
		JavaPairInputDStream lines = KafkaUtils.createDirectStream(
			jssc, 
			String.class, // key类型
			String.class, // value类型
			StringDecoder.class, // 解码器
			StringDecoder.class,
			kafkaParams, 
			topics);
		//在第一个间隔的时候其实并非一定等于10秒的,而是小于等于10秒的
		SimpleDateFormat time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		java.util.Date date=new java.util.Date();
		System.out.println("StreamingContext started->"+time.format(new Date()));
		beginTime=time.format(date);
		
		JavaDStream words = lines.flatMap(new FlatMapFunction, String>(){
			private static final long serialVersionUID = 1L;
			@Override
			public Iterable call(Tuple2 tuple) throws Exception {
			 	return Arrays.asList(tuple._2.split("/n"));	//按行进行分隔
			}
		});
		
		JavaPairDStream pairs = words.mapToPair(new PairFunction(){
			private static final long serialVersionUID = 1L;
			@Override
			public Tuple2 call(String word) throws Exception {
				return new Tuple2("line", 1);
			}
		});
		
		JavaPairDStream wordcounts = pairs.reduceByKey(new Function2(){
			private static final long serialVersionUID = 1L;
			@Override
			public Integer call(Integer v1, Integer v2) throws Exception {
				return v1 + v2;
			}
		});
		wordcounts.print();
		wordcounts.foreachRDD(new VoidFunction>() {
			private static final long serialVersionUID = 1L;
			@Override
			public void call(JavaPairRDD wordcountsRDD) throws Exception {
				SimpleDateFormat time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
				java.util.Date date=new java.util.Date(); 
				System.out.println("endTime1-->"+time.format(new Date()));	//yyyy-MM-dd HH:mm:ss形式
				final long endTime1 = System.currentTimeMillis();
				System.out.println("endTime1-->"+endTime1);	//时间戳格式
				final String endTime=time.format(date);
				cishu++;
				System.out.println("cishu-->"+cishu);
				if(cishu == 1){
					rowkey = beginTime+"__"+endTime;
					insert("linecount", rowkey, "count", "sum", "0") ;
				}else{
					SimpleDateFormat hh1 = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
					Date date1 = hh1.parse(endTime);
					long hb=date1.getTime();
					long a2 = hb - interval*1000;
					SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
			        Date date2 = new Date(a2);
			        String beginTime1 = simpleDateFormat.format(date2);
					rowkey = beginTime1+"__"+endTime;
					insert("linecount", rowkey, "count", "sum", "0") ;
				}
				//foreachPartition这个方法好像和kafka的topic的分区个数有关系,如果你topic有两个分区,则这个方法会执行两次
				wordcountsRDD.foreachPartition(new VoidFunction>>() {
					private static final long serialVersionUID = 1L;
					@Override
					public void call(Iterator> wordcounts) throws Exception {
						Tuple2 wordcount = null;
//注意:这里是利用了在hbase中对同一rowkey同一列再查入数据会覆盖前一次值的特征,所以hbase中linecount表的版本号必须是1,建表的时候如果你不修改版本号的话默认是1
						while(wordcounts.hasNext()){
							wordcount = wordcounts.next();
							insert("linecount", rowkey, "count", "sum", wordcount._2.toString()) ;
						}
					}
				});
			}
		});
		jssc.start();
		jssc.awaitTermination();
		jssc.close();
	}
}

在myeclipse中运行该代码后在kafka的生产者终端输入数据:
hello world
ni hao a
hello spark
注意:如果你是将我这三行复制过去的话还要再按一下回车键,否则的话你实际输入的是两行

过一段时间后再输入数据:
i
love
you
baby
,
come
on


查看linecount表:

hbase(main):187:0> scan 'linecount'
ROW                                                          COLUMN+CELL                                                                                                                                                                     
 2017-07-26 17:27:56__2017-07-26 17:28:00                    column=count:sum, timestamp=1501061244619, value=0                                                                                                                              
 2017-07-26 17:28:00__2017-07-26 17:28:10                    column=count:sum, timestamp=1501061252476, value=3                                                                                                                              
 2017-07-26 17:28:10__2017-07-26 17:28:20                    column=count:sum, timestamp=1501061262405, value=0                                                                                                                              
 2017-07-26 17:28:20__2017-07-26 17:28:30                    column=count:sum, timestamp=1501061272420, value=7                                                                                                                              
4 row(s) in 0.3150 seconds

二、统计kafka的topic在10秒间隔内生产数据的TopN并将统计结果存入到hbase中
在hbase中创建相应的Top3表:
create 'KafkaTop','TopN'


java代码:

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Date;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.TreeMap;

import kafka.serializer.StringDecoder;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;

import scala.Tuple2;

/**
 * @author huiqiang
 * 2017-7-28 11:24
 */
public class KafkaSparkTopN {
	private static String beginTime = null;
	private static String hbasetable = "KafkaTop";	//将处理结果存到hbase中的表名,在运行程序之前就得存在
	private static int cishu = 0;
	private static int interval = 10;	//这里设置每多少秒计算一次,我这里设置的间隔是10秒
	private static int n = 0;
	private static String rowkey = null;
	public static int K = 3;	//你想Top几就设置几
	
	//定义treeMap来保持统计结果,由于treeMap是按key升序排列的,这里要人为指定Comparator以实现倒排
	public static TreeMap treeMap = new TreeMap(new Comparator() {
  	@Override
  	public int compare(Integer x, Integer y) {
  		return y.compareTo(x);
  	}
  });
	
	//连接hbase
	public static Configuration getConfiguration() {
		Configuration conf = HBaseConfiguration.create();
		conf.set("hbase.rootdir", "hdfs://192.168.8.71:9000/hbase");
		conf.set("hbase.zookeeper.quorum", "192.168.8.71");
		return conf;
	}
	public static void insert2(String tableName,String rowKey,String family,String quailifer,String value){
		try {
			HTable table1 = new HTable(getConfiguration(), tableName);
			Put put = new Put(rowKey.getBytes());
			put.add(family.getBytes(), quailifer.getBytes(), value.getBytes());
			table1.put(put);
		} catch (Exception e) {
			e.printStackTrace();
		}
	}
	public static void insert3(String tableName,String rowKey,String family){
		try {
			HTable table1 = new HTable(getConfiguration(), tableName);
			Put put = new Put(rowKey.getBytes());
			for (int i = 1; i <= K; i++) {
				put.add(family.getBytes(), ("Top"+i).getBytes(), "null".getBytes());
			}
			table1.put(put);
		} catch (Exception e) {
			e.printStackTrace();
		}
	}
	
	public static void main(String[] args) {
		SparkConf conf = new SparkConf().setAppName("wordcount").setMaster("local[2]");
//		JavaStreamingContext jssc = new JavaStreamingContext(conf, new Duration(10000));	//毫秒
		JavaStreamingContext jssc = new JavaStreamingContext(conf,Durations.seconds(interval));	//秒
		// 首先要创建一份kafka参数map
		Map kafkaParams = new HashMap();
		// 我们这里是不需要zookeeper节点的,所以我们这里放broker.list
		kafkaParams.put("metadata.broker.list", "192.168.8.71:9092,192.168.8.72:9092,192.168.8.73:9092");
		// 然后创建一个set,里面放入你要读取的Topic,这个就是我们所说的,它给你做的很好,可以并行读取多个topic
		Set topics = new HashSet();
		topics.add("test");
		JavaPairInputDStream lines = KafkaUtils.createDirectStream(
			jssc, 
			String.class, // key类型
			String.class, // value类型
			StringDecoder.class, // 解码器
			StringDecoder.class,
			kafkaParams, 
			topics);
		//在第一个间隔的时候其实并非一定等于10秒的,而是小于等于10秒的
		SimpleDateFormat time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		java.util.Date date=new java.util.Date();
		System.out.println("StreamingContext started->"+time.format(new Date()));
		beginTime=time.format(date);
		
		JavaDStream words = lines.flatMap(new FlatMapFunction, String>(){
			private static final long serialVersionUID = 1L;
			@Override
			public Iterable call(Tuple2 tuple) throws Exception {
			 	return Arrays.asList(tuple._2.split(" "));	//按空格进行分隔
			}
		});
		
		JavaPairDStream pairs = words.mapToPair(new PairFunction(){
			private static final long serialVersionUID = 1L;
			@Override
			public Tuple2 call(String word) throws Exception {
				return new Tuple2(word, 1);
			}
		});
		
		JavaPairDStream wordcounts = pairs.reduceByKey(new Function2(){
			private static final long serialVersionUID = 1L;
			@Override
			public Integer call(Integer v1, Integer v2) throws Exception {
				return v1 + v2;
			}
		});
		wordcounts.print();
		wordcounts.foreachRDD(new VoidFunction>() {
			private static final long serialVersionUID = 1L;
			@Override
			public void call(JavaPairRDD wordcountsRDD) throws Exception {
				n = 0;
				treeMap.clear();
				SimpleDateFormat time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
				java.util.Date date=new java.util.Date(); 
				System.out.println("endTime1-->"+time.format(new Date()));	//yyyy-MM-dd HH:mm:ss形式
				final long endTime1 = System.currentTimeMillis();
				System.out.println("endTime1-->"+endTime1);	//时间戳格式
				final String endTime=time.format(date);
				cishu++;
				System.out.println("cishu-->"+cishu);
				if(cishu == 1){
					rowkey = beginTime+"__"+endTime;
					insert3(hbasetable, rowkey, "TopN");
				}else{
					SimpleDateFormat hh1 = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
					Date date1 = hh1.parse(endTime);
					long hb=date1.getTime();
					long a2 = hb - interval*1000;
					SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
			      Date date2 = new Date(a2);
			      String beginTime1 = simpleDateFormat.format(date2);
					rowkey = beginTime1+"__"+endTime;
					insert3(hbasetable, rowkey, "TopN");
				}
				//foreachPartition这个方法好像和kafka的topic的分区个数有关系,如果你topic有两个分区,则这个方法会执行两次
				wordcountsRDD.foreachPartition(new VoidFunction>>() {
					private static final long serialVersionUID = 1L;
					@Override
					public void call(Iterator> wordcounts) throws Exception {
						Tuple2 wordcount = null;
						while(wordcounts.hasNext()){
							n++;
							wordcount = wordcounts.next();
				      	if (treeMap.containsKey(wordcount._2)){
				      		String value = treeMap.get(wordcount._2) + "," + wordcount._1;
				      		treeMap.remove(wordcount._2);
				      		treeMap.put(wordcount._2, value);
				      	}else {
				      		treeMap.put(wordcount._2, wordcount._1);
				      	}
				      	if(treeMap.size() > K) {
				      		treeMap.remove(treeMap.lastKey());
				      	}
						}
					}
				});
	      if(n!=0){
	      	int y = 0;
	      	for(int num : treeMap.keySet()) {
	      		y++;
//注意:这里是利用了在hbase中对同一rowkey同一列再查入数据会覆盖前一次值的特征,所以hbase中KafkaTop表的版本号必须是1,建表的时候如果你不修改版本号的话默认是1
		    		insert2(hbasetable, rowkey, "TopN", "Top"+y, treeMap.get(num)+" "+num);
		    	}
		    } 
			}
		});
		jssc.start();
		jssc.awaitTermination();
		jssc.close();
	}
}

在myeclipse中运行该代码后在kafka的生产者终端输入数据:
hello world
hello hadoop
hello hive
hello hadoop
hello world
hello world
hbase hive


在myeclipse的打印台会输出:

-------------------------------------------
Time: 1501214340000 ms
-------------------------------------------
(hive,2)
(hello,6)
(world,3)
(hadoop,2)
(hbase,1)
endTime1-->2017-07-28 11:59:00
endTime1-->1501214340455
cishu-->1
。。。。。。省略
-------------------------------------------
Time: 1501214350000 ms
-------------------------------------------
endTime1-->2017-07-28 11:59:10
endTime1-->1501214350090
cishu-->2

查看hbase表:

hbase(main):018:0> scan 'KafkaTop'
ROW                                                          COLUMN+CELL                                                                                                                                                                     
 2017-07-28 11:58:55__2017-07-28 11:59:00                    column=TopN:Top1, timestamp=1501101768643, value=hello 6                                                                                                                        
 2017-07-28 11:58:55__2017-07-28 11:59:00                    column=TopN:Top2, timestamp=1501101768661, value=world 3                                                                                                                        
 2017-07-28 11:58:55__2017-07-28 11:59:00                    column=TopN:Top3, timestamp=1501101768679, value=hadoop,hive 2                                                                                                                  
 2017-07-28 11:59:00__2017-07-28 11:59:10                    column=TopN:Top1, timestamp=1501101770921, value=null                                                                                                                           
 2017-07-28 11:59:00__2017-07-28 11:59:10                    column=TopN:Top2, timestamp=1501101770921, value=null                                                                                                                           
 2017-07-28 11:59:00__2017-07-28 11:59:10                    column=TopN:Top3, timestamp=1501101770921, value=null                                                                                                                           
2 row(s) in 0.3140 seconds

三、下面这个不是Spark Streaming的,是来自网上的一个列子,相当于离线分析TopN,仅做参考
来自:http://blog.csdn.net/accptanggang/article/details/52924970
下面是源数据hui.txt,我存放在了我的Windows电脑的桌面的spark文件夹里,取出最大的前3个数字:
2
4
1
6
8
10
34
89


java代码:

import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;

import scala.Tuple2;

public class SparkTop {
	public static void main(String[] args) {
		SparkConf conf=new SparkConf().setAppName("Top3").setMaster("local");
		JavaSparkContext sc=new JavaSparkContext(conf);

		//JavaRDD lines = sc.textFile("hdfs://tgmaster:9000/in/nums2");
		JavaRDD lines = sc.textFile("C:\\Users\\huiqiang\\Desktop\\spark\\hui.txt");

		//经过map映射,形成键值对的形式。
		JavaPairRDD mapToPairRDD = lines.mapToPair(new PairFunction() {
			private static final long serialVersionUID = 1L;
			public Tuple2 call(String num) throws Exception {
				// TODO Auto-generated method stub
				int numObj=Integer.parseInt(num);
				Tuple2 tuple2 = new Tuple2(numObj, numObj);
				return tuple2;
			}
		});
		/**
		 * 1、通过sortByKey()算子,根据key进行降序排列
		 * 2、排序完成后,通过map()算子获取排序之后的数字
		 */
		JavaRDD resultRDD = mapToPairRDD.sortByKey(false).map(new Function, Integer>() {
			private static final long serialVersionUID = 1L;

			public Integer call(Tuple2 v1) throws Exception {
				// TODO Auto-generated method stub
				return v1._1;
			}
		});
		//通过take()算子获取排序后的前3个数字
		List nums = resultRDD.take(3);
		for (Integer num : nums) {
			System.out.println(num);
		}
		sc.close();
	}
}

在myeclipse中运行结果为:
89
34
10

你可能感兴趣的:(spark,hbase,kafka)