计蒜客 - 45284 数对 题解

一道简单的数论题,但因为自己的一点原因,wa了5次。

题目链接:https://nanti.jisuanke.com/t/45284

给出一对(a, b)和一个 k 。如果只能恰好整除(a, b)中的一个的正整数的个数大于等于k,输出Yes。

只需要求出 (a的因子数) + (b的因子数),

再减去(a和b的最大公因数的因子数)*  2  。

就能求出 a 和 b 的所有不公共因子个数了,下面是AC代码。

#include 
#include 
#include 
#include <string>
#include 
#include 
typedef long long ll;
using namespace std;

ll gcd(ll a, ll b)
{
    return b == 0 ? a : gcd(b, a % b);
}

int main()
{
    freopen("pair.in", "r", stdin);
    freopen("pair.out", "w", stdout);
    int t;
    cin >> t;
    while (t--)
    {
        ll a, b, k;
        cin >> a >> b >> k;
        int cnt = 0; // 保存 a 和 b 的因子数之和
        int cntc = 0; // 保存 gcd(a,b) 的因子数
        if (a == b) cnt = 0; // 如果 a == b,肯定没有满足条件的因子,直接cnt = 0,跳过
        else if (b % a == 0) cnt = 0; // 如果 a 是 b 的因子,也不会有满足条件的因子,cnt = 0, 跳过
        else
        {
            // 因为因子成对出现,例如 12 % 2 == 0,就得到了 2 和 6,所以试除到( 根号a )即可
            for (ll i = 1; i * i <= a; i++)
            {
                if (a % i == 0 && a / i == i) cnt++; // 重复的只算一次,例如 9 = 3 * 3,只算一个3
                else if (a % i == 0) cnt += 2;
            }
            for (ll i = 1; i * i <= b; i++)
            {
                if (b % i == 0 && b / i == i) cnt++;
                else if (b % i == 0) cnt += 2;
            }
            ll t = gcd(a, b);
            for (ll i = 1; i * i <= t; i++)
            {
                if (t % i == 0 && t / i == i) cntc++;
                else if (t % i == 0) cntc += 2;
            }
            cnt = cnt - 2 * cntc; // 公共因子在 a, b 中都出现了,所以要减去2倍
        }
        if (cnt >= k) cout << "Yes" << endl;
        else cout << "No" << endl;
    }
    return 0;
}

 

题目wa了多少次,重新写就好了。有些事却不是这样。

你可能感兴趣的:(计蒜客 - 45284 数对 题解)