import tensorflow as tf
import cv2
#开始程序,进行测试
hello=tf.constant('hello world')
sess=tf.Session()
print(sess.run(hello))
#图片的读取和展示
img=cv2.imread('baby.jpg',9)
cv2.imshow('imgbaby',img)
cv2.waitKey(0)
#图片的读取和写入。保存为png格式
import cv2
img=cv2.imread("baby.jpg",1)
cv2.imwrite('baby.png',img)
#图片有损压缩
import cv2
img=cv2.imread('baby.jpg',1)
cv2.imwrite('baby-less-quality.jpg',img,(cv2.IMWRITE_JPEG_QUALITY,80)) #压缩参数范围为:0-100 有损压缩
#图片无损压缩
import cv2
img=cv2.imread('baby.jpg',1)
cv2.imwrite('baby-less-quality.png',img,(cv2.IMWRITE_PNG_COMPRESSION,1))#压缩参数范围为:0-9 有损压缩
#图片像素读写
#图片大小计算 长*高*3(三原色)*8(8位256色)
import cv2
img=cv2.imread('baby.jpg',1)
(b,g,r)=img[100,100]
print(b,g,r)#打印一个像素的三原色值
for i in range(1,300):
img[10+i,100]=(0,0,255) #写入一条直线
cv2.imshow('imgage',img)
cv2.waitKey(0)
#常量 变量
import tensorflow as tf
data1=tf.constant(2.5,dtype=tf.float32)
data2=tf.Variable(3,name='b')
print(data1)
print(data2)
''' 块注释
sess=tf.Session()
init=tf.global_variables_initializer()
sess.run(init)
print(sess.run(data1))
print(sess.run(data2))
'''
init=tf.global_variables_initializer()
sess=tf.Session()
with sess:
sess.run(init)
print(sess.run(data2))
#四则运算 加减乘除
import tensorflow as tf
data1=tf.constant(6)
data2=tf.constant(2)
dataAdd=tf.add(data1,data2)
dataMul=tf.multiply(data1,data2)
dataSub=tf.subtract(data1,data2)
dataDiv=tf.divide(data1,data2)
with tf.Session() as sess:
print(sess.run(dataAdd))
print(sess.run(dataSub))
print(sess.run(dataMul))
print(sess.run(dataDiv))
#变量 加减乘除
data1=tf.Variable(6)
data2=tf.Variable(2)
dataAdd=tf.add(data1,data2)
dataMul=tf.multiply(data1,data2)
dataSub=tf.subtract(data1,data2)
dataDiv=tf.divide(data1,data2)
init=tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(sess.run(dataAdd))
print(sess.run(dataSub))
print(sess.run(dataMul))
print(sess.run(dataDiv))
# 矩阵运算基础
import tensorflow as tf
data1=tf.placeholder(tf.float32)
data2=tf.placeholder(tf.float32)
dataAdd=tf.add(data1,data2)
with tf.Session() as sess:
print(sess.run(dataAdd,feed_dict={data1:1,data2:2}))
print('end')
import tensorflow as tf
data1=tf.constant([[5,6]])
data2=tf.constant([[1,2],
[3,4]])
data3=tf.constant([[3,3]])
data4=tf.constant([[0,2],
[1,2],
[2,2]])
with tf.Session() as sess:
print(sess.run(data4))#打印整体
print(sess.run(data4[0]))#打印某一行
print(sess.run(data4[:,0]))#打印列
print(sess.run(data4[0,0]))
print('end!')
print(sess.run(data1))#打印整体
print(sess.run(data1[0]))#打印某一行
print(sess.run(data1[:,0]))#打印列
print(sess.run(data1[0,0]))
dataMul=tf.matmul(data1,data2)
dataAdd=tf.add(data1,data3)
with tf.Session() as sess:
print(sess.run(dataMul))
print(sess.run(dataAdd))
mat0=tf.constant([[0,0,0],[0,0,0]])
mat1=tf.zeros([2,3])
mat2=tf.ones([2,3])
mat3=tf.fill([2,3],15)
print(mat1)
mat4=tf.zeros_like(mat3)
mat5=tf.ones_like(mat3)
mat6=tf.linspace(1.5,2.5,17)
mat7=tf.random_uniform([2,3],-1,17)
with tf.Session() as sess:
print(sess.run(mat0))
print(sess.run(mat1))
print(sess.run(mat2))
print(sess.run(mat3))
print(sess.run(mat4))
print(sess.run(mat5))
print(sess.run(mat6))
print(sess.run(mat7))