- 【PyTorch】教程:torch.nn.GELU
老周有AI~算法定制
PyTorchpytorch深度学习python
torch.nn.GELU原型CLASStorch.nn.GELU(approximate='none')参数approximate(str,optional)–gelu近似算法用none或者tanh,默认为none;定义高斯误差线性单元函数GELU(x)=x∗ϕ(x)\text{GELU}(x)=x*\phi(x)GELU(x)=x∗ϕ(x)其中ϕ(x)\phi(x)ϕ(x)为高斯分布的累积分布
- PyTorch 的 torch.nn 模块学习
torch.nn是PyTorch中专门用于构建和训练神经网络的模块。它的整体架构分为几个主要部分,每部分的原理、要点和使用场景如下:1.nn.Module原理和要点:nn.Module是所有神经网络组件的基类。任何神经网络模型都应该继承nn.Module,并实现其forward方法。使用场景:用于定义和管理神经网络模型,包括层、损失函数和自定义的前向传播逻辑。主要API和使用场景:__init__
- 目前最火的agent方向-A2A快速实战构建(二): AutoGen模型集成指南:从OpenAI到本地部署的全场景LLM解决方案
引言:打破模型壁垒,构建灵活AI应用在AI应用开发中,大语言模型(LLM)的选择往往决定了系统的能力边界。AutoGen通过标准化的模型客户端协议,实现了对OpenAI、AzureOpenAI、本地模型等多源LLM的统一接入,让开发者能够根据场景需求自由切换模型服务。本文将深入解析AutoGen的模型集成框架,从云端服务到本地部署,助你构建弹性可扩展的AI代理系统。一、模型客户端核心架构:统一接口
- 在 Dify 平台中集成上下文工程技术
由数入道
人工智能数据库大数据人工智能软件工程dify
1.提升LLM问答准确率的上下文构建与提示策略大语言模型在开放领域问答中常面临幻觉和知识过时等问题。为提高回答准确率,上下文工程的关键是在提示中注入相关背景知识与指导。具体策略包括:检索增强(RAG):通过从知识库中检索相关内容并将其纳入提示,可以显著提升回答的准确性和可信度。Dify提供了知识检索节点,支持向量数据库存储外部知识,并将检索结果通过上下文变量注入LLM提示中。例如,在知识库问答应用
- OpenStack入门体验
ASDyushui
openstack
目录一.云计算概述1.什么是云计算2.云计算的服务模型(1).laaS(2).PaaS(3).Saas3.OpenStack概述(1).OpenStack起源(2).什么是OpenStack(3).OpenStack优势二.部署Openstack1.系统描述2.设置在线安装3.系统基本环境设置4.设置KVM源5.设置openstack仓库6.安装部署工具7.一键安装一.云计算概述1.什么是云计算云
- 大语言模型原理基础与前沿 基于语言反馈进行微调
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿基于语言反馈进行微调作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进展。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等在各项NLP任务上取得了令人瞩目的成绩。然而,如何进一步提高大语言模型的理
- 顶点着色器:3D世界的魔法化妆师
你一身傲骨怎能输
计算机图形学着色器
摘要顶点着色器是3D图形渲染中的关键组件,负责将3D模型中的顶点数据转换为2D屏幕坐标,并传递颜色、法线、纹理等属性。它通过坐标变换、属性传递和动画变形等功能,使角色和场景动态化,如角色骨骼动画、水面波动和旗帜飘动等。顶点着色器在渲染管线中处于第一站,与其他着色器(如几何着色器和片元着色器)协作,共同完成复杂的图形渲染任务。通过优化计算和合理分配顶点数量,顶点着色器能够高效处理大量数据,广泛应用于
- 大模型训练与微调(1)——优化器选择总结
John_今天务必休息一天
人工智能机器学习深度学习
大模型训练与微调(1)——优化器选择总结一、AdamW优化器:成熟稳定的主流选择二、Lion优化器:谷歌提出的高效替代方案三、其他优化器的补充应用四、优化器选择趋势与实验对比五、未来发展方向当前最新的大模型在优化器的选择上,主要结合了传统优化器的稳定性与新型优化器的效率优势。以下是主流大模型采用的优化器及其技术特点的总结:一、AdamW优化器:成熟稳定的主流选择核心原理与改进AdamW是Adam的
- Entity Framework 实体数据模型入门:从创建到实战应用
Leon@Lee
数据库
EntityFramework(简称EF)作为.NET平台下的ORM(对象关系映射)框架,极大地简化了数据库操作。本文将由浅入深,带您一步步了解EF实体数据模型的创建、配置、开发与使用,即使是新手也能快速上手。一、EF与ADO.NET:为何选择EF?在介绍EF之前,我们先看看传统的数据访问方式与EF的区别:ADO.NET的局限:直接编写SQL语句操作数据库,需要手动处理类型转换、SQL拼接等问题,
- 新手必看:入行大模型前一定要知道的几件事!
和老莫一起学AI
人工智能java机器学习大模型算法程序员转行
大模型怎么转?适合哪些人?哪些方向对新手友好?又有哪些坑你必须避开?文章有点长,但全是我这几年观察下来最真实的经验,如果你真的想搞懂大模型、入场不踩坑,建议认真读完,或先收藏慢慢看。一、大模型≠ChatGPT,先搞清“全景图”再出发说句真话,很多人对“大模型”的第一印象就是——ChatGPT。但这只是它的"最上层",底下的基建、平台、算法、数据处理、推理部署……才是撑起整个技术栈的骨架。入行大模型
- 10.2 ChatGPT自动生成训练数据实战:37.2%准确率提升秘籍
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力chatgpt人工智能机器学习语言模型
ChatGPT自动生成训练数据实战:37.2%准确率提升秘籍使用ChatGPT自动设计生成训练数据的Prompt在大模型微调场景中,高质量训练数据的获取往往是制约模型效果的核心瓶颈。根据2023年GoogleResearch的实证研究,使用GPT-4生成的合成数据对LLaMA2进行微调,能达到人工标注数据85%的效果水平。本章将揭秘如何通过ChatGPT自动生成适配ChatGLM3的微调数据。一、
- Assistant API的原理及应用
赛丽曼
人工智能chatgpt
什么是AssistantsAPI?**发布日期:**2023年11月6日,OpenAI在开发者大会上发布了AssistantsAPI——一款面向开发者的工具,用于在应用中构建AI助手。✅它可以做什么?AssistantsAPI允许开发者构建智能助手,这些助手可通过:instructions(指令):设定助手行为;models(模型):指定使用的GPT模型;tools(工具):调用代码解释器、知识库
- 爆改RAG!用强化学习让你的检索增强生成系统“开挂”——从小白到王者的实战指南
许泽宇的技术分享
人工智能
“RAG不准?RL来救场!”——一位被RAG气哭的AI工程师前言:RAG的烦恼与AI炼丹师的自我修养在AI圈混久了,大家都知道RAG(Retrieval-AugmentedGeneration,检索增强生成)是大模型落地的“万金油”方案。无论是企业知识库、智能问答,还是搜索引擎升级,RAG都能插上一脚。但你用过RAG就知道,理想很丰满,现实很骨感。明明知识库里啥都有,问个“量子比特的数学表达式”,
- Go 语言实现本地大模型聊天机器人:从推理到 Web UI 的全流程
雷羿 LexChien
Gogolang机器人前端
接续Go-LLM-CPP专案,继续扩充前端聊天室功能一.专案目录架构:go-llm-cpp/├──bin/#第三方依赖│├──go-llama.cpp/#封裝GGUF模型推理(CGo)│└──llm-go/#prompt构建+回合管理(Go)│├──cmd/#可执行应用│└──main.go#CLI/HTTPserver入口点│├──config/│└──persona.yaml#人格模板(系统p
- 「源力觉醒 创作者计划」_文心大模型开源:开启 AI 新时代的大门
小黄编程快乐屋
人工智能
在人工智能的浩瀚星空中,大模型技术宛如一颗璀璨的巨星,照亮了无数行业前行的道路。自诞生以来,大模型凭借其强大的语言理解与生成能力,引发了全球范围内的技术变革与创新浪潮。百度宣布于6月30日开源文心大模型4.5系列,这一消息如同一颗重磅炸弹,在AI领域掀起了惊涛骇浪,其影响之深远,意义之重大,足以改写行业的发展轨迹。百度这次放大招,直接把文心大模型4.5开源了,这操作就像往国内AI圈子里空投了一个超
- SFT(监督微调)详解:零基础入门到精通,一篇详细的入门教程!
AGI大模型老王
人工智能程序员大模型学习AI大模型大模型微调SFT
文章目录具体步骤如下:应用场景优点举例步骤1:预训练模型的选择步骤2:数据收集与标注步骤3:数据预处理步骤4:数据集划分步骤5:加载预训练模型步骤6:数据编码步骤7:创建数据加载器步骤8:定义训练过程步骤9:模型评估步骤10:模型保存零基础入门AI大模型一、全套AGI大模型学习路线二、640套AI大模型报告合集三、AI大模型经典PDF籍四、AI大模型商业化落地方案学习计划:资料领取SFT(监督微调
- 四种微调技术详解:SFT 监督微调、LoRA 微调、P-tuning v2、Freeze 监督微调方法
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,拥有卓越的自然语言处理能力,但要使它们在特定任务上表现出色,就需要进行微调,以使其适应特定的数据和任务需求。在这篇文章中,我们将深入探讨四种不同的人工智能大语言模型微调技术:SFT监督微调、LoRA微调方法、P-tuningv2微调方法和Freeze监督微调方法。第一部分:SFT监
- java类加载机制:Tomcat的类加载机制
weixin_ab
#类的加载机制java类加载
Tomcat类加载机制深度解析:打破双亲委派的Web容器实现Tomcat作为JavaWeb容器,其类加载机制为满足Web应用的隔离性、热部署和兼容性需求,对标准Java类加载机制进行了定制化扩展,核心是打破双亲委派模型并引入多层级类加载器。以下从架构设计、核心组件、热部署实现到典型问题展开解析。一、Tomcat类加载器层级架构(与标准JVM的区别)1.四层类加载器体系BootstrapClassL
- 从新闻到知识图谱:用大模型和知识工程“八步成诗”打造科技并购大脑
许泽宇的技术分享
知识图谱科技人工智能
一句话摘要:本文带你用现代NLP和知识图谱技术,把科技公司并购新闻变成结构化的知识大脑,过程全景揭秘,理论与实战齐飞,代码只用伪代码,干货与段子齐发,助你成为AI知识工程老司机!前言:为什么要把新闻变成知识图谱?想象一下,你是个投资分析师,老板让你一周内梳理全球科技并购大事件,找出谁在买谁、花了多少钱、背后有哪些大佬、涉及哪些新技术……你会怎么做?A.手动Ctrl+F,Excel狂敲,熬夜爆肝?B
- Longformer: The Long-Document Transformer(2020-4-10)
不负韶华ღ
深度学习(NLP)transformer深度学习人工智能
模型介绍目前基于Transformer的预训练模型在各项NLP任务纷纷取得更好的效果,这些成功的部分原因在于Self-Attention机制,它运行模型能够快速便捷地从整个文本序列中捕获重要信息。然而传统的Self-Attention机制的时空复杂度与文本的序列长度呈平方的关系,这在很大程度上限制了模型的输入不能太长,因此需要将过长的文档进行截断传入模型进行处理,例如BERT中能够接受的最大序列长
- Python 数据分析与可视化 Day 14 - 建模复盘 + 多模型评估对比(逻辑回归 vs 决策树)
蓝婷儿
pythonpython数据分析逻辑回归
✅今日目标回顾整个本周数据分析&建模流程学会训练第二种模型:决策树(DecisionTree)掌握多模型对比评估的方法与实践输出综合对比报告:准确率、精确率、召回率、F1等指标为后续模型调优与扩展打下基础一、本周流程快速回顾步骤内容第1天高级数据操作(索引、透视、变形)第2天缺失值和异常值处理第3天多表合并与连接第4天特征工程(编码、归一化、时间)第5天数据集拆分(训练集/测试集)第6天逻辑回归模
- Docker 容器间通信:Link 与自定义网络
Docker容器间通信:Link与自定义网络关键词:Docker容器通信、容器网络模型、DockerLink、自定义网络、Bridge网络、Overlay网络、网络驱动摘要:本文深入解析Docker容器间通信的两种核心方式——传统Link机制与现代自定义网络方案。通过对比分析两者的技术原理、实现方式、适用场景及最佳实践,帮助读者理解Docker网络架构的演进逻辑。文章从容器网络基础概念出发,详细阐
- Coze智能体开发:什么是提示词及其编写建议
王国平
CozeAIAgent智能体开发人工智能大数据语言模型python开发语言
提示词(Prompt)是AIAgent的核心,它决定了模型生成结果的质量和准确性。提示词不仅影响输出,还决定了模型对输入信息的理解深度。通过科学的提示词设计,开发者能高效引导模型生成符合预期的高质量输出。基础概念提示词提示词(Prompt)是用户在与模型或智能系统互动时输入的指令或文本,用来引导系统生成回应或执行特定任务。它可以是问题、命令或描述性文字,帮助系统理解用户的意图并提供相应的结果。提示
- Coze智能体开发:如何批量生成和处理图片
王国平
CozeAIAgent智能体开发语言模型人工智能开发语言智能体Agent
在绘本制作、图片后期制作等场景中,往往需要使用模型来批量生成和处理图片。扣子提供了多个图像处理类节点,支持图像生成、添加水印、画质优化等多种常见的图片处理方式,你可以在批处理节点中嵌套图像生成等图像处理节点,实现图片的批量操作。本文档以绘本制作工作流为例,演示如何通过批处理节点和图像节点实现图像的批量生成和批量处理。效果演示通过绘本制作工作流,你可以批量生成类似以下风格的图片。搭建过程中你也可以根
- Django5.1(91)—— 如何删除一个 Django 应用
小天的铁蛋儿
djangoPythondjangopython后端
如何删除一个Django应用Django提供了将一组功能组织成名为应用程序的Python包的能力。当需求发生变化时,应用程序可能会变得过时或不再需要。以下步骤将帮助你安全地删除一个应用程序。删除所有与该应用程序相关的引用(导入、外键等)。从相应的models.py文件中删除所有模型。通过运行makemigrations来创建相关的迁移。这一步会生成一个迁移,用于删除已删除模型的表,以及与这些模型相
- 搜索架构中的NLP技术:提升搜索准确性的关键
搜索引擎技术
架构自然语言处理人工智能ai
搜索架构中的NLP技术:提升搜索准确性的关键关键词:搜索架构、NLP技术、查询理解、语义搜索、相关性排序、意图识别、BERT模型摘要:本文将深入探讨现代搜索架构中NLP技术的核心应用,从查询理解到结果排序的全流程,揭示NLP如何提升搜索准确性。我们将通过生动的比喻解释复杂概念,分析关键技术原理,并提供实际代码示例,帮助读者全面理解搜索系统背后的NLP魔法。背景介绍目的和范围本文旨在解析NLP技术在
- 60天python训练计划----day59
在之前的学习中,我们层层递进的介绍了时序模型的发展,从AR到MA到ARMA,再到ARIMA。本质就是把数据处理的操作和模型结合在一起了,实际上昨天提到的季节性差分也可以合并到模型中,让流程变得更加统一。季节性差分用S来表示,所以这个模型叫做SARIMA模型一、SARIMA模型SARIMA(SeasonalAutoRegressiveIntegratedMovingAverage)是标准ARIMA模
- 无人机RTK技术要点与难点分析
云卓SKYDROID
无人机人工智能高科技云卓科技科普
一、RTK技术核心要点1.定位原理与精度提升RTK通过基准站与无人机(移动站)的实时差分计算消除误差。基准站已知精确坐标,将其观测的卫星载波相位数据发送给无人机,无人机通过对比自身接收的卫星信号与基准站数据的相位差,实现厘米级定位(水平1cm+1ppm,垂直2cm+1ppm)。相比普通GPS(米级误差),RTK显著解决了电离层延迟、对流层折射、卫星钟差等误差源。2.系统组成关键双天线设计:部分方案
- 如何用 Python 实现模拟木星的运行轨道、自转、公转
wh3933
python开发语言
用Python来模拟木星的轨道运行、自转和公转是一个非常有趣且富有挑战性的项目。这需要结合天文学知识和编程技巧。我们将使用VPython这个库来实现这个模拟。VPython非常适合创建简单的3D物理场景和动画,它的语法直观,能够让我们快速地将物理概念转化为可视化的三维模型。在开始之前,请确保您已经安装了VPython。如果尚未安装,可以通过pip进行安装:pipinstallvpython模拟思路
- ubuntu20安装ros foxy和ros noetic以及turtlebot3
ubuntu20镜像制作U盘启动用UUI,用UltraISO一直没有成功1,安装两个版本的ROS,均可以先添加源,然后安装desktop版的方式安装2,其他依赖安装常规说明安装3,cartographer安装1)cartographer官网提供的是ros1上的安装教程,对于ros2已经可以很方便得用apt-get的方式安装参考:https://ubuntu.com/blog/simulate-th
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa