【AI芯片】AI 需要一个多大的“心脏”?

    

作者:kevinxiaoyu,高级研究员,隶属腾讯TEG-架构平台部,主要研究方向为深度学习异构计算与硬件加速、FPGA云、高速视觉感知等方向的构架设计和优化。“深度学习的异构加速技术”系列共有三篇文章,主要在技术层面,对学术界和工业界异构加速的构架演进进行分析。

一、概述:通用=低效

作为通用处理器,CPU (Central Processing Unit) 是计算机中不可或缺的计算核心,结合指令集,完成日常工作中多种多样的计算和处理任务。然而近年来,CPU在计算平台领域一统天下的步伐走的并不顺利,可归因于两个方面,即自身约束和需求转移。

(1)自身约束又包含两方面,即半导体工艺,和存储带宽瓶颈。

一方面,当半导体的工艺制程走到7nm后,已逼近物理极限,摩尔定律逐渐失效,导致CPU不再能像以前一样享受工艺提升带来的红利:通过更高的工艺,在相同面积下,增加更多的计算资源来提升性能,并保持功耗不变。为了追求更高的性能,更低的功耗,来适应计算密集型的发展趋势,更多的设计通过降低通用性,来提升针对某一(或某一类)任务的性能,如GPU和定制ASIC。

另一方面,CPU内核的计算过程需要大量数据,而片外DDR不仅带宽有限,还具有较长的访问延迟。片上缓存可以一定程度上缓解这一问题,但容量极为有限。Intel通过数据预读、乱序执行、超线程等大量技术,解决带宽瓶颈,尽可能跑满CPU,但复杂的调度设计和缓存占用了大量的CPU硅片面积,使真正用来做运算的逻辑,所占面积甚至不到1%[1]。同时,保证程序对之前产品兼容性的约束,在一定程度上制约了CPU构架的演进。

(2)需求转移,主要体现在两个逐渐兴起的计算密集型场景,即云端大数据计算和深度学习。尤其在以CNN为代表的深度学习领域,准确率的提升伴随着模型深度的增加,对计算平台的性能要求也大幅增长,如图1所示[2]。相比于CPU面对的通用多任务计算,深度学习计算具有以下特点:任务单一,计算密度大,较高的数据可复用率。对计算构架的要求在于大规模的计算逻辑和数据带宽,而不在于复杂的任务调度,因此在CPU上并不能跑出较好的性能。

【AI芯片】AI 需要一个多大的“心脏”?_第1张图片

图1.1 深度学习的发展趋势:更高精度与更深的模型,伴随着更高的计算能力需求。

基于上述原因,CPU构架在深度学习、大数据分析,以及部分嵌入式前端应用中并不具备普适性,此时,异构计算开始进入人们的视野。本文主要针对深度学习的计算构架进行讨论。

在讨论之前,先上一张经典的类比图:分别以“可编程能力/灵活性”和“开发难度/定制性/计算效率/能耗”为横轴和纵轴,将CPU与当前主流异构处理器,如GPU、FPGA、专用ASIC等进行比较。

【AI芯片】AI 需要一个多大的“心脏”?_第2张图片

图1.2 计算平台选择依据

通过前文分析可知,CPU最大限度的灵活性是以牺牲计算效率为代价。GPU将应用场景缩减为图形图像与海量数据并行计算,设计了数千计算内核,有效的提升了硅片上计算逻辑的比例,但随之而来的带宽需求也是相当恐怖的。为了解决这一问题,一方面,为了保证通用性,兼容低数据复用的高带宽场景,GPU内部设计了大量分布式缓存;另一方面,GPU的显存始终代表了当前可商用化存储器的最新成果。显存采用的DDR始终领先服务器内存1~2代,并成为业界首先使用HBM的应用。因此,相比于CPU,GPU具备更高的计算性能和能耗比,但相对的通用性和带宽竞争使其能耗比依然高于FPGA和ASIC,并且性能依赖于优化程度,即计算模型和数据调度要适配GPU的底层架构。

FPGA和ASIC则更倾向于针对某一特定应用。无疑,专用ASIC具有最高的计算效率和最低的功耗,但在架构、设计、仿真、制造、封装、测试等各个环节将消耗大量的人力和物力。而在深度学习模型不断涌现的环境下,当尚未出现确定性应用时,对CNN、RNN中的各个模型分别进行构架设计甚至定制一款独立ASIC是一件非常奢侈的事情,因此在AI处理器的设计上,大家的做法逐渐一致,设计一款在AI领域具备一定通用性的FPGA/ASIC构架,称为领域处理器。使其可以覆盖深度学习中的一类(如常见CNN模型),或多类(如CNN+RNN等)。

二、嵌入式VS云端,不同场景下,AI处理器的两个选择

2.1 AI处理器的发展和现状

伴随着深度学习模型的深化和算力需求的提升,从学术界兴起的AI处理器方案已经迅速蔓延到工业界。目前,各大互联网、半导体、初创公司的方案主要分为云端、嵌入式端两类(或称为云侧和端侧),可归纳如表1.1所示若感兴趣可转到唐杉同学维护的列表:(basicmi.github.io/Deep-Learning-Processor-List/)

【AI芯片】AI 需要一个多大的“心脏”?_第3张图片

表1.1 深度学习处理器方案列表

【AI芯片】AI 需要一个多大的“心脏”?_第4张图片

图1.3 AI处理器的发展和设计目标

AI处理器的发展过程如图1.3所示。在早期,对AI处理器架构的探讨源于学术界的半导体和体系架构领域,此时模型层数较少,计算规模较小,算力较低,主要针对场景为嵌入式前端;随着模型的逐渐加深,对算力的需求也相应增加,导致了带宽瓶颈,即IO问题(带宽问题的成因详见2.2节),此时可通过增大片内缓存、优化调度模型来增加数据复用率等方式解决;当云端的AI处理需求逐渐浮出水面,多用户、高吞吐、低延迟、高密度部署等对算力的需求进一步提升。计算单元的剧增使IO瓶颈愈加严重,要解决需要付出较高代价(如增加DDR接口通道数量、片内缓存容量、多芯片互联等),制约了处理器实际应用。此时,片上HBM(High Bandwidth Memory,高带宽存储器)的出现使深度学习模型完全放到片上成为可能,集成度提升的同时,使带宽不再受制于芯片引脚的互联数量,从而在一定程度上解决了IO瓶颈,使云端的发展方向从解决IO带宽问题,转向解决算力伸缩问题。

到目前为止,以HBM/HMC的应用为标志,云端高性能深度学习处理器的发展共经历了两个阶段:

1.第一阶段,解决IO带宽问题;

2.第二阶段,解决算力伸缩问题。

2.2 带宽瓶颈

第一阶段,囊括了初期的AI处理器,以及至今的大部分嵌入式前端的解决方案,包括第一代TPU、目前FPGA方案的相关构架、寒武纪ASIC构架,以及90%以上的学术界成果。欲达到更高的性能,一个有效的方法是大幅度提升计算核心的并行度,但算力的扩张需要匹配相应的IO带宽。例如,图1.4中的1个乘加运算单元若运行在500MHz的频率下,每秒需要4GB的数据读写带宽;一个典型的云端高性能FPGA(以Xilinx KU115为例)共有5520个DSP,跑满性能需要22TB的带宽;而一条DDR4 DIMM仅能提供19.2GB的带宽(上述分析并不严谨,但不妨碍对带宽瓶颈的讨论)。因此在第一阶段,设计的核心是,一方面通过共享缓存、数据调用方式的优化等方式提升数据复用率,配合片上缓存,减少从片外存储器的数据加载次数。另一方面通过模型优化、低位宽量化、稀疏化等方式简化模型和计算。

【AI芯片】AI 需要一个多大的“心脏”?_第5张图片

图1.4 一个乘加单元及其带宽计算(累加值通常与输出共用,故未计入带宽)

2.3 算力伸缩

尽管片上分布的大量缓存能提供足够的计算带宽,但由于存储结构和工艺制约,片上缓存占用了大部分的芯片面积(通常为1/3至2/3),限制了算力提升下缓存容量的同步提升,如图1.5所示。

【AI芯片】AI 需要一个多大的“心脏”?_第6张图片

【AI芯片】AI 需要一个多大的“心脏”?_第7张图片

图1.5 芯片中片上缓存的规模,上图为Google第一代TPU,蓝色部分为缓存区域,占用芯片面积的37%;下图为寒武纪公司的DiaoNao AI ASIC设计,缓存占面积的66.7%(NBin+NBout+SB)。

而以HBM为代表的存储器堆叠技术,将原本一维的存储器布局扩展到三维,大幅度提高了片上存储器的密度,如图1.6所示,标志着高性能AI处理器进入第二阶段。但HBM的需要较高的工艺而大幅度提升了成本,因此仅出现在互联网和半导体巨头的设计中。HBM使片上缓存容量从MB级别提升到GB级别,可以将整个模型放到片上而不再需要从片外DDR中加载;同时,堆叠存储器提供的带宽不再受限于芯片IO引脚的制约而得到50倍以上的提升,使带宽不再是瓶颈。此时,设计的核心在于高效的计算构架、可伸缩的计算规模、和分布式计算能力,以应对海量数据的训练和计算中的频繁交互

【AI芯片】AI 需要一个多大的“心脏”?_第8张图片

图1.6 HBM与片内垂直堆叠技术

目前AI构架已从百家争鸣,逐渐走向应用。

[1] 王逵, “CPU和GPU双低效,摩尔定律之后一万倍 ——写于TPU版AlphaGo重出江湖之际”,新智元,2017.

[2] Jeff Dean, "Keynote: Recent Advances in Artificial Intelligence via Machine Learning and the Implications for Computer System Design", Hotchips2017, 2017.

 640?wx_fmt=png

人工智能赛博物理操作系统

AI-CPS OS

人工智能赛博物理操作系统(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。


AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务和数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。


领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:

  1. 重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

  2. 重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

  3. 重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?

AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:

  1. 精细种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。

  2. 智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。

  3. 高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。

  4. 不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

  5. 边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。

AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:

  1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

  2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率

  3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间


给决策制定者和商业领袖的建议:

  1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

  2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

    评估未来的知识和技能类型;

  3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

    发过程中确定更加明晰的标准和最佳实践;

  4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

    较高失业风险的人群;

  5. 开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


子曰:“君子和而不同,小人同而不和。”  《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。





产业智能官  AI-CPS



用“人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链





640?wx_fmt=png

640?wx_fmt=png


长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


新技术:“云计算”、“大数据”、“物联网”、“区块链”、“人工智能”;新产业:“智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市”、“智能驾驶”;新模式:“财富空间”、“特色小镇”、“赛博物理”、“供应链金融”


点击“阅读原文”,访问AI-CPS OS官网


本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:[email protected]





你可能感兴趣的:(【AI芯片】AI 需要一个多大的“心脏”?)