Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)


概述

1各个机器安装概况

2下载和解压缩各种包

3配置环境变量

4修改hostname文件

        4.1在3台机器上执行hostname命令

        4.2编辑hosts文件

5 Hadoop的安装和启动

        5.1设置ssh免密码登录

        5.2 创建一堆目录

        5.3 对conf目录下的文件做配置

                 5.3.1修改core-site.xml

                 5.3.2修改hadoop-env.sh

                 5.3.3修改hdfs-site.xml

                 5.3.4新建并且修改mapred-site.xml

                 5.3.5修改slaves文件

                 5.3.6修改yarn-site.xml文件

         5.4启动hadoop

6 Spark的安装和启动

         6.1对conf目录下的文件做配置

                  6.1.1 新建spark-env.h文件

                  6.1.2 新建slaves文件

                  6.1.3新建spark-defaults.conf文件

          6.2在HDFS上创建目录

          6.3启动spark

7 Hive的配置和启动

          7.1执行命令创建HDFS目录

          7.2对conf目录下的配置文件进行配置

                    7.2.1新建hive-env.sh文件并进行修改

                    7.2.2对hive-site.xml文件进行配置

                             7.2.2.1目录相关的配置

                             7.2.2.2Mysql数据库相关的配置

                             7.2.2.3其他配置

           7.3将MySQL驱动包上载到lib目录

           7.4将Spark下的某些jar包拷贝到hive目录下

           7.5对hive所要连接的数据库做初始化

           7.6启动hive命令行窗口

           7.7在hive中创建数据表

8对Hive On Spark环境做测试

           8.1执行select  count命令进行测试

           8.2 在浏览器里访问spark的UI界面


      关键字:Linux  CentOS   Java  Scala   Hive On Spark

         版本号:CentOS7   JDK1.8  Scala2.11.8    Hive2.1.1   Spark-1.6.3-with-out-hive   Hadoop2.8.0

概述

          Hive默认的执行引擎是Hadoop提供的MapReduce,而MapReduce的缺点是读写磁盘太多,为了提高Hive执行某些SQL的效率,有必要将Hive的执行引擎替换为Spark,这就是Hive On Spark。不过Hive On Spark的环境搭建的确是有点麻烦,主要是因为Hive和Spark的版本不能随意搭配,首先Spark必须是without-hive版本才可以(编译时用特殊命令申明排除掉某些jar包)。要拥有这样的Spark的版本,你可以自己编译,但是要自己编译还得做很多准备工作,也是较为麻烦和费时的。其次拥有了without-hive版本的Spark,还得选择合适的Hive版本才可以,也就是说Hive和Spark必须使用恰当的版本,才能搭建Hive On Spark环境。

          自己编译without-hive版本的Spark这里暂时不讲了,留在后面的博文中在说,本文先使用官方发布的without-hive版的Spark和官方发布的Hive版本来搭建Hive On Spark环境。

1 各个机器安装概况

          3台机器是master、slave1、slave2,使用的操作系统是CentOS7(使用Ubuntu也可以,用为用的是压缩包,所以安装方法都一样),3台机器的信息如下表:

 

master

slave1

slave2

内存

2G(越大越好)

2G(越大越好)

2G(越大越好)

IP地址

192.168.27.141

192.168.27.142

192.168.27.143

节点类型

Hadoop的namenode节点

Spark的master节点

Hadoop的datanode节点

Spark的slave节点

Hadoop的datanode节点

Spark的slave节点

JAVA_HOME

/opt/java/jdk1.8.0_121

/opt/java/jdk1.8.0_121

/opt/java/jdk1.8.0_121

SCALA_HOME

/opt/scala/scala-2.11.8

/opt/scala/scala-2.11.8

/opt/scala/scala-2.11.8

HADOOP_HOME

/opt/hadoop/hadoop-2.8.0

/opt/hadoop/hadoop-2.8.0

/opt/hadoop/hadoop-2.8.0

SPARK_HOME

/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive

/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive

opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive

HIVE_HOME

/opt/hive/apache-hive-2.1.1-bin

无需安装

无需安装

    

          说明:在此强调一下,这里的Sparkspark-1.6.3-bin-hadoop2.4-without-hive而不是spark-1.6.3-bin-hadoop2.4,否则无法成功。Hadoop的版本倒是无所谓,用2.x基本上都可以的,我这里用的是2.8.0

2  下载和解压缩各种包

            3台机器分别需要安装什么东西,上面的表格已经很明确,下载、解压缩、配置即可,这里不详细讲怎么安装,只列出下载地址。

       JDK的下载地址这里就不说了,Oracle这个流氓公司,还要求注册才能下载。

  

 Scala-2.11.8的下载地址:

https://downloads.lightbend.com/scala/2.11.8/scala-2.11.8.tgz

        Hadoop-2.8.0下载地址:

http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.8.0/hadoop-2.8.0.tar.gz

spark-1.6.3-bin-hadoop2.4-without-hive下载地址是:

 http://mirror.bit.edu.cn/apache/spark/spark-1.6.3/spark-1.6.3-bin-hadoop2.4-without-hive.tgz

        hive-2.1.1的下载地址是:

http://mirror.bit.edu.cn/apache/hive/stable-2/apache-hive-2.1.1-bin.tar.gz

    

       JDK、SCALA、Hadoop、Spark、Hive的安装方法跟之前博文讲到的没什么不同,只是在Spark和Hive的配置上有一些不同,配置相关的东西,本博文下面会讲到,安装方法的话这里不细述了,有需要的可以参考下面列出的这些博文。


JDK安装参考(Ubuntu和CentOS都可以参考下面的博文):

http://blog.csdn.net/pucao_cug/article/details/68948639

        Hadoop安装参考:

http://blog.csdn.net/pucao_cug/article/details/71698903

       SCALA 和Spark的安装参考:

http://blog.csdn.net/pucao_cug/article/details/72353701

       Hive的安装参考:

http://blog.csdn.net/pucao_cug/article/details/71773665

    请分别按照上面提供的参考博文,将这几样东西都安装成功后,在参考下文提供的配置步骤来修改配置文件,然后运行Hive On  Spark。

3 配置环境变量

      编辑/etc/profile文件,编辑完成后执行source  /etc/profile命令。

      在master机器上添加:

export JAVA_HOME=/opt/java/jdk1.8.0_121
export SCALA_HOME=/opt/scala/scala-2.11.8
export HADOOP_HOME=/opt/hadoop/hadoop-2.8.0
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HADOOP_COMMON_LIB_NATIVE_DIR=${HADOOP_HOME}/lib/native
export HADOOP_OPTS="-Djava.library.path=${HADOOP_HOME}/lib"
export HIVE_HOME=/opt/hive/apache-hive-2.1.1-bin
export HIVE_CONF_DIR=${HIVE_HOME}/conf
export SPARK_HOME=/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive
export CLASSPATH=.:${JAVA_HOME}/lib:${SCALA_HOME}/lib:${HIVE_HOME}/lib:$CLASSPATH
export PATH=.:${JAVA_HOME}/bin:${SCALA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin:${SPARK_HOME}/bin:${HIVE_HOME}/bin:$PATH

     在slave机器上添加:

export JAVA_HOME=/opt/java/jdk1.8.0_121
export SCALA_HOME=/opt/scala/scala-2.11.8
export HADOOP_HOME=/opt/hadoop/hadoop-2.8.0
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HADOOP_COMMON_LIB_NATIVE_DIR=${HADOOP_HOME}/lib/native
export HADOOP_OPTS="-Djava.library.path=${HADOOP_HOME}/lib"
export SPARK_HOME=/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive
export CLASSPATH=.:${JAVA_HOME}/lib:${SCALA_HOME}/lib:${HIVE_HOME}/lib:$CLASSPATH
export PATH=.:${JAVA_HOME}/bin:${SCALA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin:${SPARK_HOME}/bin:$PATH

4 修改hostname文件

4.1 在3台机器上执行hostname命令

         分别编辑3太机器上的/etc/houstname文件,

        master机器上将该文件内容修改为master

如图:


          在slave1机器上修改为slave1:

如图:

     

在slave2机器上修改为slave2:

如图:

     

4.2 编辑hosts文件

       编辑/etc/hosts文件,3台机器的该文件中都添加如下配置:

192.168.27.141  master
192.168.27.142  slave1
192.168.27.143  slave2

5  Hadoop的安装和启动

        搭建Hive OnSpark环境,并且不需要对Hadoop做特殊配置,如果已经参考上面提到的博文将Hadoop安装并且启动成功了,该章节可以跳过,直接看第6章。

5.1 设置ssh免密码登录

      具体方法这里不细述了,如果有需要,请参考该博文的设置ssh免密码登录章节,博文是:

      http://blog.csdn.net/pucao_cug/article/details/71698903

5.2 创建一堆目录

    在master上执行命令创建目录的命令:

mkdir /root/hadoop
mkdir /root/hadoop/tmp
mkdir /root/hadoop/var
mkdir /root/hadoop/dfs
mkdir /root/hadoop/dfs/name
mkdir /root/hadoop/dfs/data

      在slave机器上执行创建目录的命令:

mkdir /root/hadoop
mkdir /root/hadoop/tmp
mkdir /root/hadoop/var
mkdir /root/hadoop/dfs
mkdir /root/hadoop/dfs/name
mkdir /root/hadoop/dfs/data

5.3  对conf目录下的文件做配置

        3台机器都一样,对/opt/hadoop/hadoop-2.8.0/etc/hadoop目录下的文件做如下配置。

5.3.1 修改core-site.xml

         节点内加入配置:

 
       hadoop.tmp.dir
       /root/hadoop/tmp
  
  
       fs.default.name
       hdfs://master:9000
  

5.3.2 修改hadoop-env.sh

         将

export   JAVA_HOME=${JAVA_HOME}

         修改为:        

 export  JAVA_HOME=/opt/java/jdk1.8.0_121

         说明:修改为自己的JDK路径

5.3.3 修改hdfs-site.xml

        在节点内加入配置:            


  dfs.name.dir
  /root/hadoop/dfs/name


  dfs.data.dir
  /root/hadoop/dfs/data


  dfs.replication
  2


     dfs.permissions
     false

5.3.4  新建并且修改mapred-site.xml

       在该版本中,有一个名为mapred-site.xml.template的文件,复制该文件,然后改名为mapred-site.xml,命令是:

cp  /opt/hadoop/hadoop-2.8.0/etc/hadoop/mapred-site.xml.template     /opt/hadoop/hadoop-2.8.0/etc/hadoop/mapred-site.xml 

      修改这个新建的mapred-site.xml文件,在节点内加入配置:

 
   mapred.job.tracker
   master:49001


     mapred.local.dir
      /root/hadoop/var


      mapreduce.framework.name
      yarn

5.3.5  修改slaves文件

    将里面的localhost删除,添加如下内容:

slave1
slave2

5.3.6  修改yarn-site.xml文件

      在节点内加入配置(注意了,内存根据机器配置越大越好,我这里只配2个G是因为机器不行):


       yarn.resourcemanager.hostname
       master

 

       yarn.resourcemanager.address
       ${yarn.resourcemanager.hostname}:8032

 
  
       yarn.resourcemanager.scheduler.address
       ${yarn.resourcemanager.hostname}:8030
  
 
     
       yarn.resourcemanager.webapp.address
       ${yarn.resourcemanager.hostname}:8088
  
 
  
       yarn.resourcemanager.webapp.https.address
       ${yarn.resourcemanager.hostname}:8090
  
 
  
       yarn.resourcemanager.resource-tracker.address
       ${yarn.resourcemanager.hostname}:8031
  
 
  
       yarn.resourcemanager.admin.address
       ${yarn.resourcemanager.hostname}:8033
  
 
  
       yarn.nodemanager.aux-services
       mapreduce_shuffle
  
 
  
       yarn.scheduler.maximum-allocation-mb
       8182    
  
 
  
       yarn.nodemanager.vmem-pmem-ratio
       3.1
  
 
  
       yarn.nodemanager.resource.memory-mb
       2048
   
 
  
       yarn.nodemanager.vmem-check-enabled
       false
   

            说明:yarn.nodemanager.vmem-check-enabled 这个配置的意思是忽略虚拟内存的检查,如果你是安装在虚拟机上,这个配置很有用,配上去之后后续操作不容易出问题。如果是实体机上,并且内存够多,可以将这个配置去掉。

5.4  启动hadoop

          如果是第一次启动hadoop,在启动之前需要先进行初始化。因为master是namenode,所以只需要对master进行初始化操作,所谓初始化也就是对hdfs进行format。

        进入到master这台机器的/opt/hadoop/hadoop-2.8.0/bin目录,也就是执行命令:

cd  /opt/hadoop/hadoop-2.8.0/bin

          执行初始化脚本,也就是执行命令:

 ./hadoop  namenode  -format

如图:

   Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第1张图片

完整输出:

[root@master bin]# ./hadoop  namenode -format
DEPRECATED: Use of this script to executehdfs command is deprecated.
Instead use the hdfs command for it.
 
17/05/26 14:25:07 INFO namenode.NameNode:STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG:   user = root
STARTUP_MSG:   host = master/192.168.27.141
STARTUP_MSG:   args = [-format]
STARTUP_MSG:   version = 2.8.0
STARTUP_MSG:   classpath =/opt/hadoop/hadoop-2.8.0/etc/hadoop:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/activation-1.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/apacheds-i18n-2.0.0-M15.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/apacheds-kerberos-codec-2.0.0-M15.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/api-asn1-api-1.0.0-M20.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/api-util-1.0.0-M20.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/asm-3.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/avro-1.7.4.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-beanutils-1.7.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-beanutils-core-1.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-cli-1.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-codec-1.4.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-collections-3.2.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-compress-1.4.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-configuration-1.6.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-digester-1.8.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-io-2.4.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-lang-2.6.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-logging-1.1.3.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-math3-3.1.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/commons-net-3.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/curator-client-2.7.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/curator-framework-2.7.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/curator-recipes-2.7.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/gson-2.2.4.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/guava-11.0.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/hadoop-annotations-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/hadoop-auth-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/hamcrest-core-1.3.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/htrace-core4-4.0.1-incubating.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/httpclient-4.5.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/httpcore-4.4.4.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jackson-core-asl-1.9.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jackson-jaxrs-1.9.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jackson-mapper-asl-1.9.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jackson-xc-1.9.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/java-xmlbuilder-0.4.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jaxb-api-2.2.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jaxb-impl-2.2.3-1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jcip-annotations-1.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jersey-core-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jersey-json-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jersey-server-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jets3t-0.9.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jettison-1.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jetty-6.1.26.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jetty-sslengine-6.1.26.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jetty-util-6.1.26.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jsch-0.1.51.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/json-smart-1.1.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jsp-api-2.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/jsr305-3.0.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/junit-4.11.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/log4j-1.2.17.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/mockito-all-1.8.5.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/netty-3.6.2.Final.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/nimbus-jose-jwt-3.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/paranamer-2.3.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/protobuf-java-2.5.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/servlet-api-2.5.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/slf4j-api-1.7.10.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/snappy-java-1.0.4.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/stax-api-1.0-2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/xmlenc-0.52.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/xz-1.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/zookeeper-3.4.6.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/hadoop-common-2.8.0-tests.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/hadoop-common-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/hadoop-nfs-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/asm-3.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/commons-cli-1.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/commons-codec-1.4.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/commons-daemon-1.0.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/commons-io-2.4.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/commons-lang-2.6.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/commons-logging-1.1.3.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/guava-11.0.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/hadoop-hdfs-client-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/htrace-core4-4.0.1-incubating.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/jackson-core-asl-1.9.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/jackson-mapper-asl-1.9.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/jersey-core-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/jersey-server-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/jetty-6.1.26.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/jetty-util-6.1.26.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/jsr305-3.0.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/leveldbjni-all-1.8.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/log4j-1.2.17.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/netty-3.6.2.Final.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/netty-all-4.0.23.Final.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/okhttp-2.4.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/okio-1.4.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/protobuf-java-2.5.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/servlet-api-2.5.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/xercesImpl-2.9.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/xml-apis-1.3.04.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/lib/xmlenc-0.52.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/hadoop-hdfs-2.8.0-tests.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/hadoop-hdfs-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/hadoop-hdfs-client-2.8.0-tests.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/hadoop-hdfs-client-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/hadoop-hdfs-native-client-2.8.0-tests.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/hadoop-hdfs-native-client-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/hdfs/hadoop-hdfs-nfs-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/activation-1.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/aopalliance-1.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/asm-3.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/commons-cli-1.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/commons-codec-1.4.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/commons-collections-3.2.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/commons-compress-1.4.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/commons-io-2.4.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/commons-lang-2.6.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/commons-logging-1.1.3.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/commons-math-2.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/curator-client-2.7.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/curator-test-2.7.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/fst-2.24.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/guava-11.0.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/guice-3.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/guice-servlet-3.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jackson-core-asl-1.9.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jackson-jaxrs-1.9.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jackson-mapper-asl-1.9.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jackson-xc-1.9.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/javassist-3.18.1-GA.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/javax.inject-1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jaxb-api-2.2.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jaxb-impl-2.2.3-1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jersey-client-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jersey-core-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jersey-guice-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jersey-json-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jersey-server-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jettison-1.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jetty-6.1.26.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jetty-util-6.1.26.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/jsr305-3.0.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/leveldbjni-all-1.8.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/log4j-1.2.17.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/netty-3.6.2.Final.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/objenesis-2.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/protobuf-java-2.5.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/servlet-api-2.5.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/stax-api-1.0-2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/xz-1.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/zookeeper-3.4.6-tests.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/lib/zookeeper-3.4.6.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-api-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-applications-unmanaged-am-launcher-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-client-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-common-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-registry-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-server-applicationhistoryservice-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-server-common-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-server-nodemanager-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-server-resourcemanager-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-server-sharedcachemanager-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-server-tests-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-server-timeline-pluginstorage-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/yarn/hadoop-yarn-server-web-proxy-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/aopalliance-1.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/asm-3.2.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/avro-1.7.4.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/commons-compress-1.4.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/commons-io-2.4.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/guice-3.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/guice-servlet-3.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/hadoop-annotations-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/hamcrest-core-1.3.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/jackson-core-asl-1.9.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/jackson-mapper-asl-1.9.13.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/javax.inject-1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/jersey-core-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/jersey-guice-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/jersey-server-1.9.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/junit-4.11.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/leveldbjni-all-1.8.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/log4j-1.2.17.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/netty-3.6.2.Final.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/paranamer-2.3.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/protobuf-java-2.5.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/snappy-java-1.0.4.1.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/lib/xz-1.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/hadoop-mapreduce-client-app-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-plugins-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.8.0-tests.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/hadoop-mapreduce-client-shuffle-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.8.0.jar:/opt/hadoop/hadoop-2.8.0/contrib/capacity-scheduler/*.jar:/opt/hadoop/hadoop-2.8.0/contrib/capacity-scheduler/*.jar
STARTUP_MSG:   build =https://git-wip-us.apache.org/repos/asf/hadoop.git -r91f2b7a13d1e97be65db92ddabc627cc29ac0009; compiled by 'jdu' on2017-03-17T04:12Z
STARTUP_MSG:   java = 1.8.0_121
************************************************************/
17/05/26 14:25:07 INFO namenode.NameNode:registered UNIX signal handlers for [TERM, HUP, INT]
17/05/26 14:25:07 INFO namenode.NameNode:createNameNode [-format]
17/05/26 14:25:08 WARNutil.NativeCodeLoader: Unable to load native-hadoop library for yourplatform... using builtin-java classes where applicable
17/05/26 14:25:08 WARN common.Util: Path/root/hadoop/dfs/name should be specified as a URI in configuration files.Please update hdfs configuration.
17/05/26 14:25:08 WARN common.Util: Path/root/hadoop/dfs/name should be specified as a URI in configuration files.Please update hdfs configuration.
Formatting using clusterid:CID-dfd9af16-7746-405f-9c99-1750e7e80df8
17/05/26 14:25:08 INFO namenode.FSEditLog:Edit logging is async:false
17/05/26 14:25:08 INFOnamenode.FSNamesystem: KeyProvider: null
17/05/26 14:25:08 INFOnamenode.FSNamesystem: fsLock is fair: true
17/05/26 14:25:08 INFOnamenode.FSNamesystem: Detailed lock hold time metrics enabled: false
17/05/26 14:25:09 INFO blockmanagement.DatanodeManager:dfs.block.invalidate.limit=1000
17/05/26 14:25:09 INFOblockmanagement.DatanodeManager:dfs.namenode.datanode.registration.ip-hostname-check=true
17/05/26 14:25:09 INFOblockmanagement.BlockManager: dfs.namenode.startup.delay.block.deletion.sec isset to 000:00:00:00.000
17/05/26 14:25:09 INFOblockmanagement.BlockManager: The block deletion will start around 2017 May 2614:25:09
17/05/26 14:25:09 INFO util.GSet: Computingcapacity for map BlocksMap
17/05/26 14:25:09 INFO util.GSet: VMtype       = 64-bit
17/05/26 14:25:09 INFO util.GSet: 2.0% maxmemory 889 MB = 17.8 MB
17/05/26 14:25:09 INFO util.GSet:capacity      = 2^21 = 2097152 entries
17/05/26 14:25:09 INFOblockmanagement.BlockManager: dfs.block.access.token.enable=false
17/05/26 14:25:09 INFOblockmanagement.BlockManager: defaultReplication         = 2
17/05/26 14:25:09 INFOblockmanagement.BlockManager: maxReplication             = 512
17/05/26 14:25:09 INFOblockmanagement.BlockManager: minReplication             = 1
17/05/26 14:25:09 INFOblockmanagement.BlockManager: maxReplicationStreams      = 2
17/05/26 14:25:09 INFOblockmanagement.BlockManager: replicationRecheckInterval = 3000
17/05/26 14:25:09 INFOblockmanagement.BlockManager: encryptDataTransfer        = false
17/05/26 14:25:09 INFOblockmanagement.BlockManager: maxNumBlocksToLog          = 1000
17/05/26 14:25:09 INFOnamenode.FSNamesystem: fsOwner            = root (auth:SIMPLE)
17/05/26 14:25:09 INFOnamenode.FSNamesystem: supergroup         = supergroup
17/05/26 14:25:09 INFOnamenode.FSNamesystem: isPermissionEnabled = false
17/05/26 14:25:09 INFOnamenode.FSNamesystem: HA Enabled: false
17/05/26 14:25:09 INFOnamenode.FSNamesystem: Append Enabled: true
17/05/26 14:25:09 INFO util.GSet: Computingcapacity for map INodeMap
17/05/26 14:25:09 INFO util.GSet: VMtype       = 64-bit
17/05/26 14:25:09 INFO util.GSet: 1.0% maxmemory 889 MB = 8.9 MB
17/05/26 14:25:09 INFO util.GSet:capacity      = 2^20 = 1048576 entries
17/05/26 14:25:09 INFOnamenode.FSDirectory: ACLs enabled? false
17/05/26 14:25:09 INFOnamenode.FSDirectory: XAttrs enabled? true
17/05/26 14:25:09 INFO namenode.NameNode:Caching file names occurring more than 10 times
17/05/26 14:25:09 INFO util.GSet: Computingcapacity for map cachedBlocks
17/05/26 14:25:09 INFO util.GSet: VMtype       = 64-bit
17/05/26 14:25:09 INFO util.GSet: 0.25% maxmemory 889 MB = 2.2 MB
17/05/26 14:25:09 INFO util.GSet:capacity      = 2^18 = 262144 entries
17/05/26 14:25:09 INFO namenode.FSNamesystem:dfs.namenode.safemode.threshold-pct = 0.9990000128746033
17/05/26 14:25:09 INFOnamenode.FSNamesystem: dfs.namenode.safemode.min.datanodes = 0
17/05/26 14:25:09 INFOnamenode.FSNamesystem: dfs.namenode.safemode.extension     = 30000
17/05/26 14:25:09 INFO metrics.TopMetrics:NNTop conf: dfs.namenode.top.window.num.buckets = 10
17/05/26 14:25:09 INFO metrics.TopMetrics:NNTop conf: dfs.namenode.top.num.users = 10
17/05/26 14:25:09 INFO metrics.TopMetrics:NNTop conf: dfs.namenode.top.windows.minutes = 1,5,25
17/05/26 14:25:09 INFOnamenode.FSNamesystem: Retry cache on namenode is enabled
17/05/26 14:25:09 INFOnamenode.FSNamesystem: Retry cache will use 0.03 of total heap and retry cacheentry expiry time is 600000 millis
17/05/26 14:25:09 INFO util.GSet: Computingcapacity for map NameNodeRetryCache
17/05/26 14:25:09 INFO util.GSet: VMtype       = 64-bit
17/05/26 14:25:09 INFO util.GSet:0.029999999329447746% max memory 889 MB = 273.1 KB
17/05/26 14:25:09 INFO util.GSet:capacity      = 2^15 = 32768 entries
17/05/26 14:25:09 INFO namenode.FSImage:Allocated new BlockPoolId: BP-344149450-192.168.27.141-1495779909753
17/05/26 14:25:09 INFO common.Storage:Storage directory /root/hadoop/dfs/name has been successfully formatted.
17/05/26 14:25:10 INFOnamenode.FSImageFormatProtobuf: Saving image file/root/hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 using nocompression
17/05/26 14:25:10 INFOnamenode.FSImageFormatProtobuf: Image file/root/hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 of size 321bytes saved in 0 seconds.
17/05/26 14:25:10 INFOnamenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0
17/05/26 14:25:10 INFO util.ExitUtil:Exiting with status 0
17/05/26 14:25:10 INFO namenode.NameNode:SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode atmaster/192.168.27.141
************************************************************/
[root@master bin]#

          说明:初始化只需要进行一次即可,后面再启动并不需要执行初始化。

              上面初始化完成了,直接进入sbin目录:

cd  /opt/hadoop/hadoop-2.8.0/sbin

         执行启动命令:

./start-all.sh

     如图:

     Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第2张图片

     完整的输出信息是:

 [root@masterbin]# cd  /opt/hadoop/hadoop-2.8.0/sbin
[root@master sbin]# ./start-all.sh
This script is Deprecated. Instead usestart-dfs.sh and start-yarn.sh
17/05/26 14:27:00 WARNutil.NativeCodeLoader: Unable to load native-hadoop library for yourplatform... using builtin-java classes where applicable
Starting namenodes on [master]
master: starting namenode, logging to/opt/hadoop/hadoop-2.8.0/logs/hadoop-root-namenode-master.out
slave1: starting datanode, logging to/opt/hadoop/hadoop-2.8.0/logs/hadoop-root-datanode-slave1.out
slave2: starting datanode, logging to/opt/hadoop/hadoop-2.8.0/logs/hadoop-root-datanode-slave2.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode,logging to/opt/hadoop/hadoop-2.8.0/logs/hadoop-root-secondarynamenode-master.out
17/05/26 14:27:25 WARNutil.NativeCodeLoader: Unable to load native-hadoop library for yourplatform... using builtin-java classes where applicable
starting yarn daemons
starting resourcemanager, logging to/opt/hadoop/hadoop-2.8.0/logs/yarn-root-resourcemanager-master.out
slave1: starting nodemanager, logging to/opt/hadoop/hadoop-2.8.0/logs/yarn-root-nodemanager-slave1.out
slave2: starting nodemanager, logging to/opt/hadoop/hadoop-2.8.0/logs/yarn-root-nodemanager-slave2.out
[root@master sbin]#

       开放50070端口,或者直接关闭防火墙。CentOS7防火墙相关的操作请参考给博文:

http://blog.csdn.net/pucao_cug/article/details/72453382


     访问下面的地址看,看是否启动成功:

http://master:50070

      如图:

   Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第3张图片

      还可以访问这个地址:http://master:50090

     如图:

     Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第4张图片

      或者这个地址:http://master:8088

     如图:

    Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第5张图片

6  Spark 的安装和启动

        在Hive OnSpark的环境中,Spark的配置要做一些修改,本章会讲到这些配置内容。

6.1  对conf目录下的文件做配置

        对3台机器的/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/conf的一系列文件做配置。

6.1.1  新建spark-env.h文件

       执行命令,进入到/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/conf目录内:

cd   /opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/conf

       以spark为我们创建好的模板创建一个spark-env.h文件,命令是:

cp   spark-env.sh.template   spark-env.sh

      编辑spark-env.h文件,在里面加入配置(具体路径以自己的为准)

export SCALA_HOME=/opt/scala/scala-2.11.8
export JAVA_HOME=/opt/java/jdk1.8.0_121
export HADOOP_HOME=/opt/hadoop/hadoop-2.8.0
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop 
export SPARK_HOME=/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive
export SPARK_MASTER_IP=master
export SPARK_EXECUTOR_MEMORY=512M

6.1.2 新建slaves文件

       以spark为我们创建好的模板创建一个slaves文件,命令是:

cp   spark-defaults.conf.template   spark-defaults.conf

     编辑slaves文件,里面的内容为:

slave1
slave2

6.1.3  新建spark-defaults.conf文件

      以spark为我们创建好的模板创建一个slaves文件,命令是:

cp   spark-defaults.conf.template   spark-defaults.conf

      编辑spark-defaults.conf文件,在里面新增配置:

spark.master                     spark://master:7077
spark.eventLog.enabled           true
spark.eventLog.dir               hdfs://master:9000/directory
spark.serializer                  org.apache.spark.serializer.KryoSerializer
spark.driver.memory              700M
spark.executor.extraJavaOptions  -XX:+PrintGCDetails -Dkey=value-Dnumbers="one two three"

6.2 在HDFS上创建目录

        因为上面的配置中让spark将eventLog存到HDFS的directory目录下,所以需要执行hadoop命令,在HDFS上创建directory目录,创建目录命令是:

$HADOOP_HOME/bin/hadoop   fs  -mkdir  -p   /directory

        授权命令是:

$HADOOP_HOME/bin/hadoop   fs  -chmod  777  /directory

        如图:

     

6.3  启动spark

      进入sbin目录,也就是执行下面的命令:

cd  /opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/sbin

       执行启动脚本:

 ./start-all.sh

如图:

   

完整的输出是:

[root@mastersbin]# cd /opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/sbin
[root@master sbin]#  cd /opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/sbin
[root@master sbin]#  ./start-all.sh
starting org.apache.spark.deploy.master.Master,logging to/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/logs/spark-root-org.apache.spark.deploy.master.Master-1-master.out
slave1: startingorg.apache.spark.deploy.worker.Worker, logging to /opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-slave1.out
slave2: startingorg.apache.spark.deploy.worker.Worker, logging to/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-slave2.out
[root@master sbin]#

访问这个地址看是否启动成功:

http://master:8080

如图:

Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第6张图片


7  Hive的配置和启动

             对于Hive安装不熟悉的可以参考该博文:

http://blog.csdn.net/pucao_cug/article/details/71773665

          不过需要强调的是,那篇博文中没有搭建 Hive On Spark环境,所以那篇博文只是用于对安装Hive做参考,如果要搭建Hive On  Spark本章节后面的配置不能略过,必须认真看。

7.1 执行命令创建HDFS目录

         hive的文件存储在hadoop提供的HDFS分布式文件系统里,需要调用hadoop命令,在hdfs上创建几个目录。

       执行创建命令:

$HADOOP_HOME/bin/hadoop   fs   -mkdir  -p   /user/hive/warehouse

         给刚才新建的目录赋予读写权限,执行命令:

$HADOOP_HOME/bin/hadoop  fs   -chmod   777   /user/hive/warehouse 

      执行创建命令:

$HADOOP_HOME/bin/hadoop   fs   -mkdir -p   /tmp/hive

      执行授权命令:

$HADOOP_HOME/bin/hadoop  fs   -chmod  777   /tmp/hive

      如图:

    

7.2 对conf目录下的配置文件进行配置

        对/opt/hive/apache-hive-2.1.1-bin/conf目录下的一系列文件做配置,这些配置很关键。

7.2.1  新建hive-env.sh文件并进行修改

      进入到/opt/hive/apache-hive-2.1.1-bin/conf目录,命令是:

cd   /opt/hive/apache-hive-2.1.1-bin/conf

       将hive-env.sh.template文件复制一份,并且改名为hive-env.sh,命令是:

cp    hive-env.sh.template    hive-env.sh

       打开hive-env.sh配置并且添加以下内容:

export  HADOOP_HOME=/opt/hadoop/hadoop-2.8.0
export  HIVE_CONF_DIR=/opt/hive/apache-hive-2.1.1-bin/conf
export  HIVE_AUX_JARS_PATH=/opt/hive/apache-hive-2.1.1-bin/lib

7.2.2 对hive-site.xml文件进行配置

          首先要创建hive-site.xml文件

      进入到/opt/hive/apache-hive-2.1.1-bin/conf目录,命令是:

cd  /opt/hive/apache-hive-2.1.1-bin/conf

       将hive-default.xml.template文件复制一份,并且改名为hive-site.xml,命令是:

cp  hive-default.xml.template  hive-site.xml

7.2.2.1 目录相关的配置

      首先在master机器上上创建临时目录/opt/hive/tmp

     将hive-site.xml文件中的所有${system:java.io.tmpdir}替换为/opt/hive/tmp

     将hive-site.xml文件中的所有${system:user.name}都替换为root

7.2.2.2  MySQL数据库相关的配置

搜索javax.jdo.option.ConnectionURL,将该name对应的value修改为MySQL的地址,例如我修改后是:

    javax.jdo.option.ConnectionURL 
    jdbc:mysql://192.168.27.138:3306/hive?createDatabaseIfNotExist=true

搜索javax.jdo.option.ConnectionDriverName,将该name对应的value修改为MySQL驱动类路径:

  javax.jdo.option.ConnectionDriverName
  com.mysql.jdbc.Driver

搜索javax.jdo.option.ConnectionUserName,将对应的value修改为MySQL数据库登录名:

   javax.jdo.option.ConnectionUserName
   root

搜索javax.jdo.option.ConnectionPassword,将对应的value修改为MySQL数据库的登录密码:

javax.jdo.option.ConnectionPassword
cj

搜索hive.metastore.schema.verification,将对应的value修改为false:

    hive.metastore.schema.verification
    false

7.2.2.3 其他配置

搜索hive.execution.engine,将对应的value修改为spark:

  hive.execution.engine
  spark

在末尾新增配置:

  

     
                   hive.enable.spark.execution.engine
                   true
   
  
    
                   spark.home
                   /opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive
   
  
     
                   spark.master
                   spark://master:7077
   
  
   
                   spark.submit.deployMode
                   client
   
  
    
                   spark.serializer
                   org.apache.spark.serializer.KryoSerializer
   
  
    
          spark.eventLog.enabled
          true
     
        
       
          spark.eventLog.dir
          hdfs://master:9000/directory
       
        
    
          spark.executor.memory
          512m
     

7.3 将MySQL驱动包上载到lib目录

        MySQL驱动包上载到Hivelib目录下,例如我是上载到/opt/hive/apache-hive-2.1.1-bin/lib目录下。

如图:

    Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第7张图片

7.4 将Spark下的某些jar包拷贝到hive目录下

         在master 机器上,将/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/lib目录下的spark-assembly-1.6.3-hadoop2.4.0.jar包拷贝到/opt/hive/apache-hive-2.1.1-bin/lib目录下。

如图:

     Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第8张图片

7.5  对hive所要连接的数据库做初始化

      进入到hivebin目录执行命令:

cd  /opt/hive/apache-hive-2.1.1-bin/bin

     对数据库进行初始化,执行命令:

  schematool  -initSchema  -dbType  mysql

      如图:

    Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第9张图片

    完整输出是:

[root@mastersbin]# cd  /opt/hive/apache-hive-2.1.1-bin/bin
[root@master bin]# schematool   -initSchema -dbType  mysql
which: no hbase in(.:/opt/java/jdk1.8.0_121/bin:/opt/hadoop/hadoop-2.8.0/bin:/opt/hadoop/hadoop-2.8.0/sbin:/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/bin:/opt/zookeeper/zookeeper-3.4.10/bin:/opt/hive/apache-hive-2.1.1-bin/bin:/opt/maven/apache-maven-3.3.9/bin:/opt/scala/scala-2.11.8/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin)
SLF4J: Class path contains multiple SLF4Jbindings.
SLF4J: Found binding in[jar:file:/opt/hive/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in[jar:file:/opt/hive/apache-hive-2.1.1-bin/lib/spark-assembly-1.6.3-hadoop2.4.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in[jar:file:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Seehttp://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type[org.apache.logging.slf4j.Log4jLoggerFactory]
Metastore connection URL:       jdbc:mysql://192.168.27.138:3306/hive?createDatabaseIfNotExist=true
Metastore Connection Driver :    com.mysql.jdbc.Driver
Metastore connection User:       root
Starting metastore schema initialization to2.1.0
Initialization scripthive-schema-2.1.0.mysql.sql
Initialization script completed
schemaTool completed
[root@master bin]#

7.6  启动hive命令行窗口

     现在打开到hive的bin目录中,打开命令是:

cd   /opt/hive/apache-hive-2.1.1-bin/bin

      执行hive脚本,也就是执行命令:

./hive

如图:

   Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第10张图片

完整输出是:

[root@mastersbin]# cd  /opt/hive/apache-hive-2.1.1-bin/bin
[root@master bin]# schematool   -initSchema -dbType  mysql
which: no hbase in(.:/opt/java/jdk1.8.0_121/bin:/opt/hadoop/hadoop-2.8.0/bin:/opt/hadoop/hadoop-2.8.0/sbin:/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/bin:/opt/zookeeper/zookeeper-3.4.10/bin:/opt/hive/apache-hive-2.1.1-bin/bin:/opt/maven/apache-maven-3.3.9/bin:/opt/scala/scala-2.11.8/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin)
SLF4J: Class path contains multiple SLF4Jbindings.
SLF4J: Found binding in[jar:file:/opt/hive/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in[jar:file:/opt/hive/apache-hive-2.1.1-bin/lib/spark-assembly-1.6.3-hadoop2.4.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in[jar:file:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Seehttp://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type[org.apache.logging.slf4j.Log4jLoggerFactory]
Metastore connection URL:        jdbc:mysql://192.168.27.138:3306/hive?createDatabaseIfNotExist=true
Metastore Connection Driver :    com.mysql.jdbc.Driver
Metastore connection User:       root
Starting metastore schema initialization to2.1.0
Initialization scripthive-schema-2.1.0.mysql.sql
Initialization script completed
schemaTool completed
[root@master bin]# cd   /opt/hive/apache-hive-2.1.1-bin/bin
[root@master bin]# ./hive
which: no hbase in(.:/opt/java/jdk1.8.0_121/bin:/opt/hadoop/hadoop-2.8.0/bin:/opt/hadoop/hadoop-2.8.0/sbin:/opt/spark/spark-1.6.3-bin-hadoop2.4-without-hive/bin:/opt/zookeeper/zookeeper-3.4.10/bin:/opt/hive/apache-hive-2.1.1-bin/bin:/opt/maven/apache-maven-3.3.9/bin:/opt/scala/scala-2.11.8/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin)
SLF4J: Class path contains multiple SLF4Jbindings.
SLF4J: Found binding in[jar:file:/opt/hive/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in[jar:file:/opt/hive/apache-hive-2.1.1-bin/lib/spark-assembly-1.6.3-hadoop2.4.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in[jar:file:/opt/hadoop/hadoop-2.8.0/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindingsfor an explanation.
SLF4J: Actual binding is of type[org.apache.logging.slf4j.Log4jLoggerFactory]
 
Logging initialized using configuration infile:/opt/hive/apache-hive-2.1.1-bin/conf/hive-log4j2.properties Async: true
hive>

7.7  在hive中创建数据表

在hive命令行中执行hive命令,创建表:

create table t_hello(id int, name string)ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE;

     如图:

 

       表已经有了,往表里加点数据吧,首先在/opt/hive目录下创建一个hello.txt文件,往文件里添加点数据

如图:

    Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第11张图片

 

         在hive命令行中执行hive命令,将hello.txt中的内容加载到t_hello表中,命令是:

load data local inpath'/opt/hive/hello.txt' into table t_hello;

如图:

    

执行查询命令,看看t_hello表里的内容:

select * from  t_hello;

如图:

   Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第12张图片

8 对Hive On Spark环境做测试

8.1 执行select  count命令进行测试

      是否能顺利执行selectcount命令,才是我们Hive  On  Spark环境是否搭建成功的标志。

    接着7.7章节的命令行窗口继续执行select  count命令:

select  count(*)  from  t_hello;

如图:

   Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第13张图片

完整的输出信息是:

hive> create table t_hello(id int, namestring) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE;
OK
Time taken: 2.332 seconds
hive> load data local inpath '/opt/hive/hello.txt' into table t_hello;
Loading data to table default.t_hello
OK
Time taken: 2.587 seconds
hive> select * from t_hello;
OK
1      zs
2      ls
Time taken: 1.917 seconds, Fetched: 2row(s)
hive> select count(*) from t_hello;
Query ID =root_20170526151457_6e319edf-b3e8-4274-9a02-736306cb00d6
Total jobs = 1
Launching Job 1 out of 1
In order to change the average load for areducer (in bytes):
  sethive.exec.reducers.bytes.per.reducer=
In order to limit the maximum number ofreducers:
  sethive.exec.reducers.max=
In order to set a constant number ofreducers:
  setmapreduce.job.reduces=
Starting Spark Job =52a77fdf-22a7-45aa-b02d-2f9c764de424
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = SENT
state = STARTED
state = STARTED
state = STARTED
state = STARTED
state = STARTED
state = STARTED
state = STARTED
state = STARTED
state = STARTED
state = STARTED
state = STARTED
 
Query Hive on Spark job[0] stages:
0
1
 
Status: Running (Hive on Spark job[0])
Job Progress Format
CurrentTime StageId_StageAttemptId:SucceededTasksCount(+RunningTasksCount-FailedTasksCount)/TotalTasksCount[StageCost]
2017-05-26 15:15:33,439 Stage-0_0: 0/1  Stage-1_0: 0/1
state = STARTED
2017-05-26 15:15:34,470 Stage-0_0:0(+1)/1      Stage-1_0: 0/1
state = STARTED
state = STARTED
state = STARTED
2017-05-26 15:15:37,533 Stage-0_0:0(+1)/1      Stage-1_0: 0/1
state = STARTED
state = STARTED
state = STARTED
2017-05-26 15:15:40,643 Stage-0_0:0(+1)/1      Stage-1_0: 0/1
state = STARTED
state = STARTED
state = STARTED
2017-05-26 15:15:43,779 Stage-0_0: 0(+1)/1      Stage-1_0: 0/1
state = STARTED
state = STARTED
state = STARTED
2017-05-26 15:15:46,904 Stage-0_0:0(+1)/1      Stage-1_0: 0/1
state = STARTED
state = STARTED
state = STARTED
2017-05-26 15:15:50,098 Stage-0_0:0(+1)/1      Stage-1_0: 0/1
state = STARTED
state = STARTED
state = STARTED
2017-05-26 15:15:53,150 Stage-0_0:0(+1)/1      Stage-1_0: 0/1
state = STARTED
state = STARTED
state = STARTED
2017-05-26 15:15:56,187 Stage-0_0:0(+1)/1      Stage-1_0: 0/1
state = STARTED
state = STARTED
state = STARTED
2017-05-26 15:15:59,361 Stage-0_0:0(+1)/1      Stage-1_0: 0/1
state = STARTED
state = STARTED
state = STARTED
2017-05-26 15:16:02,515 Stage-0_0:0(+1)/1      Stage-1_0: 0/1
state = STARTED
state = STARTED
2017-05-26 15:16:04,559 Stage-0_0: 1/1 FinishedStage-1_0: 0(+1)/1
state = STARTED
state = SUCCEEDED
2017-05-26 15:16:06,598 Stage-0_0: 1/1Finished Stage-1_0: 1/1 Finished
Status: Finished successfully in 60.76seconds
OK
2
Time taken: 69.023 seconds, Fetched: 1row(s)
hive>

          说明:在数据很少的时候并不能体现Hive on Spark的优势,但是数据很多的时候就会比较明显了。能够正常执行select  cout命令,证明我们的Hive On Spark环境搭建成功了。

8.2 在浏览器里访问spark的UI界面

        如果Hive On Spark运行成功,可以在spark的UI界面上查看,我们是否在Hive中成功调用了Spark集群来执行任务。访问下面的地址:http://master:8080/

     如图:

    Linux搭建Hive On Spark环境(spark-1.6.3-without-hive+hadoop2.8.0+hive2.1.1)_第14张图片

你可能感兴趣的:(Linux,运维,CentOS,Hive,On,Spark,spark,hive)