二分类我就不多说了,大家应该能够实现的
多分类python的实现
# 获取confusion matrix
cm = confusion_matrix(y_true, y_pred, labels=range(n_classes))
cm = cm.astype(np.float32)
FP = cm.sum(axis=0) - np.diag(cm)
FN = cm.sum(axis=1) - np.diag(cm)
TP = np.diag(cm)
TN = cm.sum() - (FP + FN + TP)
# Sensitivity, hit rate, recall, or true positive rate
TPR = TP / (TP + FN)
# Specificity or true negative rate
TNR = TN / (TN + FP)
# Precision or positive predictive value
PPV = TP / (TP + FP)
# Negative predictive value
NPV = TN / (TN + FN)
# Fall out or false positive rate
FPR = FP / (FP + TN)
# False negative rate
FNR = FN / (TP + FN)
# False discovery rate
FDR = FP / (TP + FP)
# Overall accuracy
ACC = (TP + TN) / (TP + FP + FN + TN)
# ACC_micro = (sum(TP) + sum(TN)) / (sum(TP) + sum(FP) + sum(FN) + sum(TN))
ACC_macro = np.mean(ACC) # to get a sense of effectiveness of our method on the small classes we computed this average (macro-average)
F1 = (2 * PPV * TPR) / (PPV + TPR)
F1_macro = np.mean(F1)
TP,FP,FN,我觉得都还行,但是我觉得这TN 稍微有点硬核,不建议计算这个东西,毕竟也不需要计算这个东西的。
参考链接:https://stackoverflow.com/questions/31324218/scikit-learn-how-to-obtain-true-positive-true-negative-false-positive-and-fal