套路安装:
目录
step 1.0 安装驱动
step 2.0 安装虚拟环境
step 3.0 安装cuda和cudnn
step 4.0 安装软件包
step 5.0 启动jupyter
step 6.0 测试
附:requirement-linux.txt
win10,先安装Nvidia显卡配套驱动(可安装电脑官方安装盘驱动、或者用驱动精灵、或者自行查找显卡匹配驱动);
ubuntu,先安装Nvidia显卡配套驱动(参考https://lossyou.com/2019/09/11/Ubuntu-install-nvidia);
在cmd或terminal命令行界面用 nvidia-smi 查看显卡信息,显示如下截图则表示驱动安装成功(需注意,有的笔记本低端显卡不支持此命令)
> nvidia-smi
https://docs.conda.io/projects/conda/en/latest/user-guide/install/download.html
win10/ubuntu 18.04, 安装miniconda,
win10直接运行.exe 安装包,ubuntu直接运行安装包
./Miniconda3-latest-Linux-x86_64.sh
一路输入yes确认,指定安装目录即可。
创建虚拟环境,并激活虚拟环境(环境名自定义,此处以 “python36”为例)
conda create -n python36 python=3.6
conda activate python36
cuda和cudnn,可自行从英伟达官网下载
https://developer.nvidia.com/rdp/cudnn-archive
https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Windows&target_arch=x86_64
或在虚拟环境下,利用conda自动安装(linux下推荐)
conda install cudatoolkit=10.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/ -y
conda install cudnn=7 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/ -y
安装必要packages (requirement-linux.txt 中位pip安装的packages列表)
安装tensorflow-gpu版本(可自行修改非gpu版本)
pip install --no-cache-dir -i http://pypi.douban.com/simple -r requirement-linux.txt --trusted-host pypi.douban.com
pip install --upgrade tensorflow-gpu==1.14 --no-cache-dir -i https://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com
安装pytorch
#windows
pip install torch===1.4.0 torchvision===0.5.0 -f https://download.pytorch.org/whl/torch_stable.html
#linux
pip install torch== torchvision --no-cache-dir -i https://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com
keras可视化需要的pydot通过pip已经安装
需要的graphviz不建议通过exe(win10下)安装,建议通过进入虚拟环境安装,
>conda activate python36
>pip install graphviz
linux下:
apt-get update
apt-get install graphviz
启动jupyter 进入编码环境(此处jupyter notebook亦可设为绝对路径xxx/xxxx/jupyter notebook, 这样就不比先激活虚拟环境)
> conda activate python36
> nohup jupyter notebook --ip=0.0.0.0 --port=9998 --allow-root --NotebookApp.open_browser=False --notebook-dir=/work/Code/Python >jupyter.log &
import tensorflow as tf
tf.test.gpu_device_name()
如下结果则表示安装成功:
absl-py==0.8.0
astor==0.8.0
attrs==19.3.0
backcall==0.1.0
bleach==3.1.0
certifi==2019.9.11
cycler==0.10.0
decorator==4.4.0
defusedxml==0.6.0
entrypoints==0.3
flask==1.1.1
gast==0.3.2
google-pasta==0.1.7
grpcio==1.16.1
h5py==2.9.0
imageio==2.6.1
importlib-metadata==0.23
ipykernel==5.1.3
ipython==7.8.0
ipython-genutils==0.2.0
ipywidgets==7.5.1
jedi==0.15.1
Jinja2==2.10.3
jsonschema==3.1.1
jupyter==1.0.0
jupyter-client==5.3.4
jupyter-console==6.0.0
jupyter-core==4.6.0
Keras==2.3.1
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.0
kiwisolver==1.1.0
Markdown==3.1.1
MarkupSafe==1.1.1
matplotlib==3.1.1
mistune==0.8.4
more-itertools==7.2.0
nbconvert==5.6.0
nbformat==4.4.0
networkx==2.4
nibabel==3.0.1
notebook==6.0.1
numpy==1.16.2
opencv-python==4.2.0.32
pandas==0.25.2
pandocfilters==1.4.2
parso==0.5.1
pexpect==4.7.0
pickleshare==0.7.5
Pillow==6.2.1
prometheus-client==0.7.1
prompt-toolkit==2.0.10
protobuf==3.9.2
ptyprocess==0.6.0
pydicom==1.2.0
pydot==1.4.1
Pygments==2.4.2
pyinstaller==3.6
pyparsing==2.4.2
pyrsistent==0.15.4
python-dateutil==2.8.0
pytz==2019.3
PyWavelets==1.1.1
PyYAML==5.1.2
pyzmq==18.1.0
qtconsole==4.5.5
scikit-image==0.16.2
scikit-learn==0.22.1
scipy==1.3.1
Send2Trash==1.5.0
SimpleITK==1.2.3
six==1.12.0
termcolor==1.1.0
terminado==0.8.2
testpath==0.4.2
tornado==6.0.3
tqdm==4.36.1
traitlets==4.3.3
wcwidth==0.1.7
webencodings==0.5.1
Werkzeug==0.16.0
widgetsnbextension==3.5.1
wrapt==1.11.2
zipp==0.6.0