- Swin-Unet:图像分割领域的强大工具
陈凯韵
Swin-Unet:图像分割领域的强大工具【下载地址】Swin-UnetPyTorch代码仓库本仓库提供了一个基于PyTorch实现的Swin-Unet模型的代码资源。Swin-Unet是一种结合了SwinTransformer和U-Net结构的深度学习模型,适用于图像分割任务。该代码可以帮助研究人员和开发者快速上手并应用Swin-Unet模型进行图像分割实验项目地址:https://gitcod
- 新质生产力与核心竞争力提升
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
新质生产力、人工智能、机器学习、深度学习、算法优化、数据驱动、核心竞争力、数字化转型1.背景介绍在当今数字化时代,科技创新正以惊人的速度推动着社会发展。人工智能(AI)作为科技发展的重要驱动力,正在深刻地改变着生产方式和生活方式。从自动驾驶汽车到智能语音助手,从个性化推荐系统到医疗诊断辅助,AI技术的应用场景日益广泛,为人类社会带来了前所未有的机遇。然而,AI技术的应用并非一帆风顺。如何有效地利用
- 李开复:苹果发布AI应用的未来
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
苹果,AI,应用,未来,深度学习,自然语言处理,计算机视觉1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,并开始渗透到人们生活的方方面面。从智能手机的语音助手到自动驾驶汽车,AI正在改变着我们的世界。作为科技巨头,苹果也积极布局AI领域,并将其融入到其产品和服务中。2017年,苹果发布了其首款AI芯片A11Bionic,并将其应用于iPhoneX等产品。该芯片拥有强大的神经网络处理能力,为
- 推荐系统的未来发展方向:大模型的主流化
AI天才研究院
计算大数据AI人工智能AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《推荐系统的未来发展方向:大模型的主流化》关键词:推荐系统,大模型,深度学习,人工智能,未来趋势摘要:本文深入探讨了推荐系统的发展历程及其在当前人工智能时代的重要性。重点分析了深度学习在大模型中的应用,探讨了大模型的主流化趋势及其面临的挑战。通过案例研究,展示了大模型在实际推荐系统中的应用效果,并对未来的发展方向进行了展望。目录大纲推荐系统的概述1.1推荐系统的发展历程1.2推荐系统的基本架构深度
- 自动驾驶中的虚实迁移学习:降低对真实世界数据的依赖
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
自动驾驶,迁移学习,虚实环境,数据效率,深度学习,强化学习1.背景介绍自动驾驶技术作为人工智能领域的重要应用之一,其发展离不开海量真实世界驾驶数据。然而,收集和标注真实世界驾驶数据成本高昂,且存在安全隐患。因此,如何降低对真实世界数据的依赖,提高自动驾驶系统的训练效率和安全性,成为一个亟待解决的关键问题。虚实迁移学习(Virtual-to-RealTransferLearning)作为一种新兴的机
- linux下使用脚本实现对进程的内存占用自动化监测
浪小满
常用问题解决linux自动化运维内存占用情况监测
linux系统中常用cat/proc/{pid}/status和pmap-x{pid}来监测某个进程的内存资源占用情况。其中注意各参数的含义如下:VmSize:表示进程当前虚拟内存大小VmPeak:表示进程所占用最大虚拟内存大小VmRSS:表示进程当前占用物理内存的大小(与procrank中的RSS,pmap中的RSS一样)VmLck:表示被锁定的内存大小VmHWM:表示进程所占用物理内存的峰值V
- 详细介绍 NVIDIA GeForce RTX 系列,各显卡配置参数(长期更新 - 2024.12)
JiaWen技术圈
人工智能深度学习机器学习gpu算力AIGC人工智能图形渲染
NVIDIAGeForceRTX系列是NVIDIA面向消费级市场的高性能GPU产品线,注重提供高性能的图形处理能力和游戏特性。主要面向游戏玩家和普通用户,同时也被广泛用于深度学习推理和训练等计算密集型任务。主要GPU产品有:50Series、40Series、30Series、20Series、10Series。其主要参数如下:NVIDIAGeForceRTX50Series规格架构:Blackw
- 自动检测和机器审核系统实现
╰つ゛木槿
javaeasyuijavascriptpythonjava自然语言处理
目录一、自动检测和机器审核实现步骤1.文本预处理步骤细节:2.关键词检测步骤细节:3.情感分析与情境理解步骤细节:4.机器学习模型训练步骤细节:5.深度学习模型步骤细节:6.多模态审查步骤细节:7.用户行为分析与违规预测步骤细节:总结二、常用的分词工具1.jieba2.THULAC3.HanLP4.SnowNLP5.LAC(LexicalAnalysisofChinese)6.PyLDAvis(结
- 怎么样搭建客户管理系统
客户管理crm系统
搭建一个高效的客户管理系统(CRM)是现代企业提升竞争力的关键所在。首先,明确需求是搭建客户管理系统的第一步,企业应根据自身行业特性和客户管理需求来设计系统架构、选择功能模块。其次,选择合适的CRM工具能够显著提升系统的实施效率,市场上如纷享销客、ZohoCRM等多款工具,在国产化、国际化的背景下,能够为企业提供多元化的服务和定制化需求解决方案。最后,数据管理与自动化功能的整合是系统成功与否的关键
- 【CV】25.1.7 arxiv更新速递
hinmer
arxivCV每日更新python人工智能计算机视觉chatgpt目标检测aiAIGC
—第1篇----关键词:手势识别,计算机视觉,低光照条件,机器学习,RaspberryPi,OpenCV论文链接-摘要:手势识别是一种基于计算机视觉技术的感知用户界面,允许计算机将人类动作解释为命令,使用户无需使用手与计算机交流,从而使鼠标和键盘变得多余。手势识别的主要弱点是光线条件,因为手势控制依赖于摄像头。摄像头用于在2D和3D中解释手势,因此提取的信息可能因光源而异。系统的限制是无法在黑暗环
- Python 如何使用 Bert 进行中文情感分析
程序员徐师兄
Python入门专栏pythonbert开发语言情感分析
前言在自然语言处理(NLP)领域,情感分析是一个非常常见且重要的应用。情感分析通常用于识别文本中的情感,例如判断一条微博或评论是正面、负面还是中性。在过去的几年中,随着深度学习的发展,BERT(BidirectionalEncoderRepresentationsfromTransformers)模型迅速成为了处理自然语言的强大工具。BERT是一种基于Transformer架构的预训练模型,它能够
- 基于Hough变换与分数阶变分PDE的图像去雨算法实现(附带Matlab源码)
心之飞翼
算法matlab计算机视觉Matlab
基于Hough变换与分数阶变分PDE的图像去雨算法实现(附带Matlab源码)图像去雨是计算机视觉领域的一个重要问题,它的目标是从雨滴造成的图像中恢复出原始的清晰图像。本文将介绍一种基于Hough变换和分数阶变分PDE(PartialDifferentialEquation)的图像去雨算法,并提供相应的Matlab源代码。算法步骤如下:导入图像首先,我们需要导入包含雨滴的图像。可以使用Matlab
- PyTorch深度学习实战(43)——手写文本识别
盼小辉丶
深度学习pytorch人工智能
PyTorch深度学习实战(43)——手写文本识别0.前言1.手写文本识别1.1基本概念1.2输入和输出格式1.3CTC损失值2.模型与数据集分析2.1数据集分析2.2模型分析3.实现手写文本识别模型小结系列链接0.前言手写文本识别,也称为手写文本的光学字符识别(OpticalCharacterRecognition,OCR),是计算机视觉和自然语言处理中的一项具有挑战性的任务。与印刷文本不同,手
- 算法中的时间复杂度和空间复杂度
CM莫问
人工智能算法常见概念算法人工智能python时间复杂度空间复杂度
一、背景随着人工智能的纵深发展,我们会发现现在做算法很多时候都是通过掉包来解决问题了。Torch或者Tensorflow之类的深度学习库大大减少了算法工程师的工作量,而且在张量运算、反向传播等环节,这些深度学习库的模块设计也尽最大可能地降低了计算的时间和空间复杂度,从而不需要我们额外进行过多的干预。如果不是科班读计算机相关专业的,相信不少朋友第一次听说时间复杂度和空间复杂度的概念是在找工作刷lee
- Swin-Unet多分类:图像分割领域的强大工具
甄亚凌
Swin-Unet多分类:图像分割领域的强大工具【下载地址】Swin-Unet多分类资源文件介绍本仓库提供了一个名为“Swin-Unet多分类”的资源文件,该文件主要用于图像分割任务中的多分类问题。资源文件中包含了一个基于Swin-Unet模型的实现,旨在对图像进行多分类分割项目地址:https://gitcode.com/open-source-toolkit/32588项目介绍在图像处理和计算
- ARM Cortex-M3与Cortex-M4权威指南
胡妃意
ARMCortex-M3与Cortex-M4权威指南【下载地址】ARMCortex-M3与Cortex-M4权威指南ARMCortex-M3与Cortex-M4权威指南欢迎阅读《ARMCortex-M3与Cortex-M4权威指南(第3版)》,这是一本针对嵌入式系统开发者量身打造的深度学习手册项目地址:https://gitcode.com/Open-source-documentation-tu
- 【数据挖掘实战】 房价预测
机器学习司猫白
数据挖掘人工智能python机器学习
本次对kaggle中的入门级数据集,房价回归数据集进行数据挖掘,预测房屋价格。本人主页:机器学习司猫白机器学习专栏:机器学习实战PyTorch入门专栏:PyTorch入门深度学习实战:深度学习ok,话不多说,我们进入正题吧概述本次竞赛有79个解释变量(几乎)描述了爱荷华州艾姆斯住宅的各个方面,需要预测每套住宅的最终价格。数据集描述本次数据集已经上传,大家可以自行下载尝试文件说明train.csv-
- GPT-4对话模型在客服中的应用与前景:开启智能客服新时代
Echo_Wish
前沿技术人工智能python人工智能gpt
GPT-4对话模型在客服中的应用与前景:开启智能客服新时代随着人工智能技术的迅猛发展,基于深度学习的对话模型在各个领域中得到了广泛应用。其中,GPT-4对话模型在客服系统中的应用尤为引人注目。本文将探讨GPT-4在客服中的应用与未来发展前景,并结合具体代码示例进行说明。一、GPT-4对话模型概述GPT-4(GenerativePre-trainedTransformer4)是OpenAI开发的一种
- Python 实现 RGB 和 HSV 相互转换算法
传说里的故事
python算法开发语言
Python实现RGB和HSV相互转换算法在图像处理领域,RGB和HSV是两种最常用的颜色空间。RGB是红绿蓝三原色的组合,HSV是色调、饱和度和亮度的组合。在不同应用场景下,需要将RGB和HSV进行相互转换。下面给出Python实现RGB和HSV相互转换的算法,并附上完整的源码。首先,我们需要导入colorsys库。这个库提供了许多颜色空间的转换函数。接下来,我们定义RGBToHSV和HSVTo
- 模型压缩与优化技术——神经架构搜索(Neural Architecture Search, NAS)
DuHz
轻量化模型机器学习计算机视觉人工智能神经网络深度学习数据挖掘语音识别
模型压缩与优化技术中的神经架构搜索(NeuralArchitectureSearch,NAS)技术1.引言在深度学习领域,神经网络的架构设计对模型的性能至关重要。传统的手动设计网络架构的过程费时费力,且通常依赖于经验和直觉。为了提升效率与效果,神经架构搜索(NeuralArchitectureSearch,NAS)作为一种自动化的方法,能够通过算法寻找和优化最佳的神经网络架构。NAS可以在图像识别
- 【揭秘】图像算法工程师岗位如何进入?
认识祂
人工智能算法图像算法工程师
“图像算法工程师,主要专注于开发图像处理和计算机视觉算法,广泛应用于各行业。本文,我们来揭秘一下他们的日常工作,以及如何成为这一领域的专业人才。”01图像算法工程师的日常工作算法设计与开发图像算法工程师的核心任务是设计和开发算法,以解决特定的图像处理或计算机视觉问题。常见的任务包括:图像分类:使用卷积神经网络(CNN)对图像进行分类,常见算法如ResNet、VGG。目标检测:在图像中定位并标注物体
- QAT与PTQ模型量化方法的区别
old_power
计算机视觉模型量化深度学习计算机视觉
QAT(QuantizationAwareTraining)和PTQ(PostTrainingQuantization)是两种常见的模型量化方法,用于减少深度学习模型的计算和存储开销,同时尽量保持模型的性能。1.QAT(QuantizationAwareTraining)定义:QAT是在模型训练过程中引入量化操作,使模型在训练时就能感知到量化带来的影响,从而更好地适应量化后的精度损失。流程:在训练
- 毕设分享 深度学习街道行人流量计数系统
fawubio_A
毕业设计python毕设
文章目录0前言1项目运行效果2设计概要2原理介绍2.1目标检测概况什么是目标检测?发展阶段2.2行人检测行人检测简介行人检测技术难点行人检测实现效果4最后0前言这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要
- Keras、TensorFlow、PyTorch框架对比及服务器配置揭秘
小深ai硬件分享
人工智能深度学习服务器
深度学习框架:开启智能大门的钥匙在数字化浪潮中,深度学习如明星照亮众多领域。从智能安防的人脸识别,到医疗图像分析、电商商品推荐、智能语音助手等,其身影无处不在,改变着生活与工作方式。在深度学习领域,Keras、TensorFlow和PyTorch是主流框架,能助开发者构建强大智能模型。但这些框架要充分发挥作用,离不开合适的服务器配置,就像魔法师需要魔法棒和魔力,下面我们就来看看这些具体的框架吧:框
- 深度学习|表示学习|卷积神经网络|局部链接是什么?|06
漂亮_大男孩
表示学习深度学习学习cnn
如是我闻:局部连接(LocalConnectivity),是卷积神经网络(CNN)中的一个关键特性。什么是局部连接(LocalConnectivity)?局部连接指的是:在卷积操作中,每个神经元(或输出单元)只与输入数据的一个局部区域相关联,而不是与整个输入数据相连。换句话说:全连接网络(FullyConnectedLayer)中,每个神经元会与上一层所有的神经元相连。卷积网络(Convoluti
- 双足机器人开源项目
广州深情Yangy_Jiaojiao
机器人
双足机器人(也称为人形机器人或仿人机器人)是一个复杂的领域,涉及机械设计、电子工程、控制理论、计算机视觉等多个学科。对于想要探索或开发双足机器人的开发者来说,有许多开源项目可以提供帮助。这些项目通常包括硬件设计文件、固件代码以及高级软件框架,以实现运动控制、导航、感知等功能。双足机器人开源项目推荐1.OpenHumanoids简介:由GeorgiaTech的AMBER实验室开发的开源双足机器人平台
- 深度学习中交叉熵函数的导数:(极简)
洪小帅
深度学习人工智能神经网络python
文章目录前言一.交叉熵函数的导数二.Z,y为有n条数据的矩阵前言另一个博主有更详细的推导https://blog.csdn.net/chaipp0607/article/details/101946040一.交叉熵函数的导数softmax:令一条数据最后的输出为[z1,z2,z3,z4,…,z10],这里令输出层的神经元数量为10pi=ezi∑j=110ezjpi=\frac{e^{z_i}}{\
- 【Python】已完美解决:ERROR: Could not find a version that satisfies the requirement re
屿小夏
python开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 下载马斯克Grok-1模型的实战代码
herosunly
大模型grok-1下载模型实战代码
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了下载马斯克Grok-1模型的实战代码,希望能对学习大模型的同学们有所帮助
- 吴恩达深度学习笔记(七)——机器学习策略
子非鱼icon
深度学习自学笔记深度学习机器学习人工智能神经网络吴恩达
一、正交化通俗的理解就是:要能够诊断出系统性能瓶颈在哪里,以有策略刚好解决这个问题。一个“按钮”只负责解决一件事情。二、单一数字评估指标准确率(precision):在分类器中标记为猫的例子中,有多少是真的猫召回率(recall):对于所有的真猫图片,你的分类器正确识别了多少。但如果有两个评估指标,就很难去选择一个更好的分类器,如下图所示。所以有一个结合这两个指标的标准方法,也即F1分数,定义如下
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&