若该文为原创文章,未经允许不得转载
原博主博客地址:https://blog.csdn.net/qq21497936
原博主博客导航:https://blog.csdn.net/qq21497936/article/details/102478062
本文章博客地址:https://blog.csdn.net/qq21497936/article/details/104529643
各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究
红胖子(红模仿)的博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结合等等)持续更新中...(点击传送门)
上一篇:《OpenCV开发笔记(十七):算法基础之线性滤波对比-方框、均值、高斯滤波》
下一篇:《OpenCV开发笔记(十九):算法基础之非线性滤波-双边滤波》
本篇章学习非线性滤波中的中值滤波。
中值滤波是指用模板核算子覆盖区域内所有像素值的排序,位置处于中间的像素值用来个更新当前像素点的值。
常见的核算子3x3,模板区域内有9个元素,将9个有元素分辨按照小到大排序为a1,a2,a3,a4,a5,a6,a7,a8,a9,中值滤波就是取中间的值a5替代中间点。
中值滤波在边界的方寸方面由于均值滤波,是经常使用的一种滤波器,但是在模板逐渐变大时,会润在一定的边界模糊,画面的清晰度基本保持,中值滤波对处理椒盐噪声非常有效,中值滤波能减弱或消除傅里叶控件的高频分量,同时也影响低频分量。
中值滤波去噪声的效果依赖于两个要素:领域的空间范围和中值计算中涉及的像素数。一般来说,小于滤波器面积一半的亮或暗的物体基本上会被滤除,而较大的物体几乎会原封不动的保存下来,因此中值滤波器的空间尺寸必须根据现有的问题来进行调整。
中值滤波属于非线性滤波,线性滤波易于实现,且易于从频率响应的角度分析,单如果噪声是颗粒噪声而非高斯早省事,线性滤波不能去除噪声。如图像出现极值点,线性滤波只是将噪声转换为平缓但仍可见的散粒,最佳的解决方式是通过非线性滤波来滤除噪声。
void medianBlur( InputArray src,
OutputArray dst,
int ksize );
void OpenCVManager::testMedianBlur()
{
QString fileName1 = "E:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/1.jpg";
cv::Mat srcMat = cv::imread(fileName1.toStdString());
cv::String windowName = _windowTitle.toStdString();
cvui::init(windowName);
if(!srcMat.data)
{
qDebug() << __FILE__ << __LINE__
<< "Failed to load image:" << fileName1;
return;
}
cv::Mat dstMat;
dstMat = cv::Mat::zeros(srcMat.size(), srcMat.type());
cv::Mat windowMat = cv::Mat(cv::Size(dstMat.cols * 3, dstMat.rows),
srcMat.type());
int ksize = 1; // 核心大小
cvui::window(windowMat, dstMat.cols, 0, dstMat.cols, dstMat.rows, "settings");
while(true)
{
windowMat = cv::Scalar(0, 0, 0);
// 原图先copy到左边
cv::Mat leftMat = windowMat(cv::Range(0, srcMat.rows),
cv::Range(0, srcMat.cols));
cv::addWeighted(leftMat, 1.0f, srcMat, 1.0f, 0.0f, leftMat);
// 中间为调整滤波参数的相关设置
cvui::printf(windowMat, 375, 140, "ksize");
cvui::trackbar(windowMat, 375, 150, 165, &ksize, 0, 10);
// 中值滤波
cv::medianBlur(srcMat, dstMat, ksize * 2 + 1);
// 效果图copy到右边
// 注意:rang从位置1到位置2,不是位置1+宽度
cv::Mat rightMat = windowMat(cv::Range(0, srcMat.rows),
cv::Range(srcMat.cols * 2, srcMat.cols * 3));
cv::addWeighted(rightMat, 0.0f, dstMat, 1.0f, 0.0f, rightMat);
// 更新
cvui::update();
// 显示
cv::imshow(windowName, windowMat);
// esc键退出
if(cv::waitKey(25) == 27)
{
break;
}
}
}
对应版本号v1.13.0
上一篇:《OpenCV开发笔记(十七):算法基础之线性滤波对比-方框、均值、高斯滤波》
下一篇:《OpenCV开发笔记(十九):算法基础之非线性滤波-双边滤波》
原博主博客地址:https://blog.csdn.net/qq21497936
原博主博客导航:https://blog.csdn.net/qq21497936/article/details/102478062
本文章博客地址:https://blog.csdn.net/qq21497936/article/details/104529643