- Flink-Hadoop实战项目
Dylan_muc
hadoophdfsflink
项目说明文档1.项目概述1.1项目简介本项目是一个基于ApacheFlink的大数据流处理平台,专门用于处理铁路系统的票务和车次信息数据。系统包含两个核心流处理作业:文件处理作业和数据合并作业,采用定时调度机制,支持Kerberos安全认证,实现从文件读取到数据仓库存储的完整数据处理链路。1.2技术栈流处理引擎:ApacheFlink1.18.1存储系统:HDFS(Hadoop分布式文件系统)数据
- 【Redis篇】数据库架构演进中Redis缓存的技术必然性—高并发场景下穿透、击穿、雪崩的体系化解决方案
奈斯DB
Redis专栏缓存redis数据库架构运维
《博主主页》:CSDN主页__奈斯DBIFClub社区主页__奈斯、《擅长领域》:擅长阿里云AnalyticDBforMySQL(分布式数据仓库)、Oracle、MySQL、Linux、prometheus监控;并对SQLserver、NoSQL(Redis)有了解如果觉得文章对你有所帮助,欢迎点赞收藏加关注作为DBA或运维在日常与Redis打交道时,往往更关注部署安装、Key清理、内存回收、备份
- Linux教程(4)----[hive数据仓库工具]
.房东的猫
Linux教程(完善中~~)linux
Hive基本概念Hive简介什么是HiveHive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。为什么使用Hive直接使用hadoop所面临的问题人员学习成本太高
- flink-sql读写hive-1.13
第一片心意
flinkflinksqlhive
1.版本说明本文档内容基于flink-1.13.x,其他版本的整理,请查看本人博客的flink专栏其他文章。1.1.概述ApacheHive已经成为了数据仓库生态系统中的核心。它不仅仅是一个用于大数据分析和ETL场景的SQL引擎,同样也是一个数据管理平台,可用于发现,定义,和演化数据。Flink与Hive的集成包含两个层面。一是利用了Hive的MetaStore作为持久化的Catalog,用户可通
- 推荐文章:《同济大学软件学院万院长谈择业》
weixin_34087301
同济大学软件学院万院长谈择业一、关于企业计算方向企业计算(EnterpriseComputing)是稍时髦较好听的名词,主要是指企业信息系统,如ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理,即物流软件),银行证券软件,财务软件,电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统。企业计算领域对人才的需求显然永远是数量最大的,因为这是计算
- 计算机系毕业生的前途在哪(一个牛人对计算机系的阐述)
蚊子
嵌入式嵌入式操作系统wincelinux手机游戏j2me
值得未毕业的、刚毕业的、或想转行的朋友们揣摩参考。一、关于企业计算方向企业计算(EnterpriseComputing)是稍时髦较好听的名词,主要是指企业信息系统如:ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理,即物流软件),银行证券软件财务软件电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统。企业计算领域对人才的需求显然永远是数量最
- 大学生学软件必看
欧巴Godwin
日志嵌入式嵌入式操作系统wincelinux手机游戏j2me
一、关于企业计算方向企业计算(EnterpriseComputing)是稍时髦较好听的名词,主要是指企业信息系统,如ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理,即物流软件),银行证券软件,财务软件,电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统.企业计算领域对人才的需求显然永远是数量最大的,因为这是计算机应用最多的领域.搞这方面的
- 数据湖与数据仓库在云平台的融合架构:Delta Lake实战指南
AI云原生与云计算技术学院
AI云原生与云计算数据仓库架构ai
数据湖与数据仓库在云平台的融合架构:DeltaLake实战指南关键词:数据湖,数据仓库,云平台,融合架构,DeltaLake,湖仓一体,数据治理摘要:本文深入探讨数据湖与数据仓库在云平台的融合架构,以DeltaLake为核心技术载体,解析湖仓融合的技术原理、实施路径及最佳实践。通过对比传统数据架构的痛点,阐述DeltaLake如何通过ACID事务、Schema管理、时间旅行等特性实现非结构化数据湖
- Hive简介
文章目录Hive简介Hive特点Hive和RDBMS的对比Hive的架构Hive的数据组织Hive数据类型Hive简介1、Hive由Facebook实现并开源2、是基于Hadoop的一个数据仓库工具3、可以将结构化的数据映射为一张数据库表4、并提供HQL(HiveSQL)查询功能5、底层数据是存储在HDFS上6、Hive的本质是将SQL语句转换为MapReduce任务运行7、使不熟悉MapRedu
- 【面试系列】C++ 高频面试题
野老杂谈
全网最全IT公司面试宝典c++面试编程语言
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️全流程数据技术实战指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台和数据仓库的核心技术和方法。文章目录C++初级面试题及其详细解答1.解释C
- Docker快速构建Hive测试环境
静谧星光
dockerhive容器编程
Docker是一种流行的容器化平台,可以帮助我们快速构建和管理应用程序的环境。在本文中,我们将学习如何使用Docker快速构建Hive测试环境。Hive是一个基于Hadoop的数据仓库基础设施,它提供了一种类似于SQL的查询语言,用于分析和处理大规模数据集。步骤1:安装Docker和DockerCompose首先,我们需要安装Docker和DockerCompose。您可以根据您的操作系统类型,从
- Apache SeaTunnel × Hive 深度集成指南:原理、配置与实践
数据库
在大数据处理的复杂生态中,数据的高效流转与整合是实现数据价值的关键。ApacheSeaTunnel作为一款高性能、分布式、易扩展的数据集成框架,能够快速实现海量数据的实时采集、转换和加载;而ApacheHive作为经典的数据仓库工具,为结构化数据的存储、查询和分析提供了坚实的基础。将ApacheSeaTunnel与Hive进行集成,能够充分发挥两者的优势,构建起高效的数据处理链路,满足企业多样化的
- 数据仓库技术及应用(Hive 产生背景与架构设计,存储模型与数据类型)
娟恋无暇
数据仓库笔记hive
1.Hive产生背景传统Hadoop架构存在的一些问题:MapReduce编程必须掌握Java,门槛较高传统数据库开发、DBA、运维人员学习门槛高HDFS上没有Schema的概念,仅仅是一个纯文本文件Hive的产生:为了让用户从一个现有数据基础架构转移到Hadoop上现有数据基础架构大多基于关系型数据库和SQL查询Facebook诞生了Hive2.Hive是什么官网:https://hive.ap
- Kafka
小熊哥^--^
kafka分布式
一、什么是Kafka?Kafka的主要用途?Kafka是一个分布式流处理平台,是Apache的一个顶级项目,它被设计用于高吞吐量,分布式、持久性的数据流处理。Kafka实现了一套非常高效的一种发布订阅模型,应用场景非常广泛,比如日志聚合(收集日志)、数据流处理、数据仓库集成(传输数据到数据仓库)、应用程序集成(作为消息中间件来实现异步通信)、流媒体处理(列如实时监控,事件驱动的应用程序)二、top
- 解析大数据领域结构化数据的管理模式
大数据洞察
大数据ai
解码结构化数据:大数据时代的高效管理模式与实践指南关键词结构化数据、大数据管理、数据建模、分布式数据库、数据仓库、数据治理、性能优化摘要在大数据的洪流中,结构化数据犹如隐藏在波涛之下的磐石,虽然不如非结构化数据那般引人注目,却是企业决策的基石。本文深入剖析了大数据环境下结构化数据的管理模式,从传统关系型数据库到现代分布式系统,从数据建模到存储架构,全面解读了结构化数据管理的核心技术与实践方法。通过
- flink数据同步mysql到hive_基于Canal与Flink实现数据实时增量同步(二)
背景在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(OperationalDataStore)数据。在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据(DB)两类。对于业务DB数据来说,从MySQL等关系型数据库的业务数据进行采集,然后导入到Hive中,是进行数据仓库生产的重要环节。如何准确、高效地把MySQL数据同步到Hive中?一般常用的解决方案是批量
- 数据编织趋势探秘
今天跟大家聊聊数据编织(DataFabric)的概念Gartner在2022年重要战略技术趋势中重点提到数据编织(DataFabric)这个概念,本质上是在谈怎么实现“数据找人而不是人找数据”的愿景为什么DataFabric将会成为一种趋势,为什么越来越多的企业将在未来采用这样的方式进行部署?1、在传统IT时代,无论是早年的“数据仓库”还是近几年的“数据湖”和“大数据”时代,其实数据利用都是集中式
- 浅谈数据管理架构 Data Fabric(数据编织)及其关键特征、落地应用
Aloudata
DataFabric多源异构数据集成数据管理
伴随着企业从数字化转型迈向更先进的数智化运营新阶段,对看数、用数的依赖越来越强,但数据的海量增长给数据管理带来一系列难题,如数据类型和加工链路日益复杂,数据存储和计算引擎更加分散,数据需求响应与数据质量、数据安全风险难以兼顾,数据流通过程中的合规性冲突,以及混合多云环境下的“数据孤岛”等。简言之,进入数智化时代,企业数据管理正变得异常复杂和艰难,传统的数据管理架构往往依赖于单一、物理集中的数据仓库
- 数据仓库 实时计算_如果您的云数据仓库没有分开存储和计算,为什么您会浪费金钱...
weixin_26631359
pythonjava大数据算法leetcode
数据仓库实时计算Notsolongago,establishinganenterprisedatawarehouseinvolvedaprojectthatwouldtakemonthsorevenyears.Thesedays,withcloudcomputing,youcaneasilyregisterforaSaaSorPaaSofferingprovidedbyoneofthecloudv
- Spring AI ETL Pipeline使用指南
超级小忍
SpringAIspring人工智能
前言(Introduction)版本声明:本文基于SpringAI1.0.0版本编写。由于SpringAI目前仍处于活跃开发阶段,API和组件可能在后续版本中发生变化,请注意及时关注官方文档更新以保持兼容性。在当今大数据和人工智能快速发展的背景下,ETL(Extract,Transform,Load)系统已经不再只是简单的数据搬运工。ETL是数据仓库和数据分析流程中的核心环节,它负责将分散的数据从
- 大数据面试题之Hive(1)
小的~~
大数据大数据hivehadoop
说下为什么要使用Hive?Hive的优缺点?Hive的作用是什么?说下Hive是什么?跟数据仓库区别?Hive架构Hive内部表和外部表的区别?为什么内部表的删除,就会将数据全部删除,而外部表只删除表结构?为什么用外部表更好?Hive建表语句?创建表时使用什么分隔符?Hive删除语句外部表删除的是什么?Hive数据倾斜以及解决方案Hive如果不用参数调优,在map和reduce端应该做什么Hive
- 数据仓库之星型模型
james二次元
数据仓库大数据数据仓库
星型模型(StarSchema)是一种常见的数据仓库建模技术,专门用于支持高效的查询和数据分析。它以其简单直观的结构得名,中心是一个事实表(FactTable),周围是多个维度表(DimensionTables),整体结构看起来像一颗星。星型模型的组成部分事实表(FactTable)定义:存储与业务过程相关的数值型度量数据(Measures),如销售额、数量等。特征:主键:由多个外键组成,这些外键
- 深入浅出地讲解数据仓库建设中的业务建模方法论,包括实体联系视图模式、维度建模、星型模型、雪花模型、主题建模等
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介数据分析师经历了从小处收集数据到中大型互联网公司的数据,面对海量数据和种类繁多的数据源头,如何快速准确地进行分析、建模、报表,成为众多数据分析师的共同心愿。而数据建模则是数据分析师的基础功课之一。数据建模作为数据分析师的一项关键技能和素质要求,其目标是将分析获得的数据转化成有意义的信息,并最终呈现给用户,能够帮助企业实现科学管理、优化决策、提升效益和服务能力。随
- 数据库领域数据仓库的星型模型与雪花模型对比
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库数据仓库ai
数据库领域数据仓库的星型模型与雪花模型对比关键词:数据仓库、星型模型、雪花模型、数据建模、对比分析摘要:本文深入探讨了数据库领域数据仓库中的星型模型与雪花模型。首先介绍了数据仓库建模的背景知识,包括目的、预期读者和文档结构等。接着详细阐述了星型模型和雪花模型的核心概念、联系以及各自的架构特点,并通过Mermaid流程图进行直观展示。然后对两种模型的核心算法原理展开分析,结合Python源代码进行说
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- 数据同步工具对比:Canal、DataX与Flink CDC
智慧源点
大数据flink大数据
在现代数据架构中,数据同步是构建数据仓库、实现实时分析、支持业务决策的关键环节。Canal、DataX和FlinkCDC作为三种主流的数据同步工具,各自有着不同的设计理念和适用场景。本文将深入探讨这三者的技术特点、使用场景以及实践中的差异,帮助开发者根据实际需求选择合适的工具。1.工具概述1.1CanalCanal是阿里巴巴开源的一款基于MySQL数据库增量日志(binlog)解析的组件,主要用于
- SQLite 数据库在大数据分析中的应用潜力
数据库管理艺术
数据库sqlite数据分析ai
SQLite数据库在大数据分析中的应用潜力关键词:SQLite、大数据分析、轻量级数据库、嵌入式数据库、数据仓库、OLAP、性能优化摘要:本文深入探讨了SQLite这一轻量级嵌入式数据库在大数据分析领域的应用潜力。我们将从SQLite的核心架构出发,分析其在大数据场景下的优势和限制,并通过实际案例展示如何通过优化策略和扩展技术使SQLite能够处理大规模数据集。文章包含性能对比测试、优化技巧和实际
- SnowConvert:自动化数据迁移的技术解析与最佳实践
weixin_30777913
迁移学习数据库运维
SnowConvert是Snowflake生态系统的关键迁移工具,专为将传统数据仓库(如Oracle、Teradata、SQLServer等)的代码资产高效、准确地转换为Snowflake原生语法而设计。以下基于官方文档对其技术原理、工作流程及最佳实践进行深入分析:一、SnowConvert核心技术解析精准的语法映射引擎语言支持:深度解析源系统特有语法(OraclePL/SQL,TeradataB
- 实时数仓工具-SelectDB
清平乐的技术博客
实时数仓数据仓库
一、SelectDB简介官网:https://www.selectdb.com/1、ApacheDorisApacheDoris是一款采用MPP架构的实时分布式OLAP数据仓库,专注于高效的实时数据分析。Doris项目于2013年内部开发,2017年正式开源,目前在GitHub上获得了接近13,000星,全球已有超过5,000家企业采用,社区活跃度极高,累计贡献者超过650人,且曾连续数月在大数据
- 解锁 AnalyticDB for PostgreSQL 的潜力:从数据仓库到矢量数据库
aehrutktrjk
数据库postgresql数据仓库python
引言在大数据时代,快速分析大量数据已成为企业竞争的关键。AnalyticDBforPostgreSQL是阿里云提供的一个强大的并行处理数据仓库服务,适用于在线分析海量数据。本文将探讨其基本功能及在矢量数据库中的应用,包括如何与Langchain进行集成。主要内容AnalyticDBforPostgreSQL的核心功能大规模并行处理(MPP):允许高效地处理和分析大量数据。兼容性:支持ANSISQL
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f