超参数的选择
1. 超参数有哪些
与超参数对应的是参数。参数是可以在模型中通过BP(反向传播)进行更新学习的参数,例如各种权值矩阵,偏移量等等。超参数是需要进行程序员自己选择的参数,无法学习获得。
常见的超参数有模型(SVM,Softmax,Multi-layer Neural Network,…),迭代算法(Adam,SGD,…),学习率(learning rate)(不同的迭代算法还有各种不同的超参数,如beta1,beta2等等,但常见的做法是使用默认值,不进行调参),正则化方程的选择(L0,L1,L2),正则化系数,dropout的概率等等。
2. 确定调节范围
超参数的种类多,调节范围大,需要先进行简单的测试确定调参范围。
2.1. 模型
模型的选择很大程度上取决于具体的实际问题,但必须通过几项基本测试。
首先,模型必须可以正常运行,即代码编写正确。可以通过第一个epoch的loss估计,即估算第一个epoch的loss,并与实际结果比较。注意此过程需要设置正则项系数为0,因为正则项引入的loss难以估算。
其次,模型必须可以对于小数据集过拟合,即得到loss接近于0,accuracy接近于1的模型。否则应该尝试其他或者更复杂的模型。
最后,如果val_acc与acc相差很小,可能是因为模型复杂度不够,需要尝试更为复杂的模型。
2.2. 学习率
loss基本不变:学习率过低
loss震动明显或者溢出:学习率过高
根据以上两条原则,可以得到学习率的大致范围。
2.3. 正则项系数
val_acc与acc相差较大:正则项系数过小
loss逐渐增大:正则项系数过大
根据以上两条原则,可以得到正则项系数的大致范围。
3. 交叉验证
对于训练集再次进行切分,得到训练集以及验证集。通过训练集训练得到的模型,在验证集验证,从而确定超参数。(选取在验证集结果最好的超参数)
3.1. 先粗调,再细调
先通过数量少,间距大的粗调确定细调的大致范围。然后在小范围内部进行间距小,数量大的细调。
3.2. 尝试在对数空间内进行调节
即在对数空间内部随机生成测试参数,而不是在原空间生成,通常用于学习率以及正则项系数等的调节。出发点是该超参数的指数项对于模型的结果影响更显著;而同阶的数据之间即便原域相差较大,对于模型结果的影响反而不如不同阶的数据差距大。
3.3. 随机搜索参数值,而不是格点搜索
通过随机搜索,可以更好的发现趋势。图中所示的是通过随机搜索可以发现数据在某一维上的变化更加明显,得到明显的趋势。
网格搜索
网格搜索(Grid Search)名字非常大气,但是用简答的话来说就是你手动的给出一个模型中你想要改动的所用的参数,程序自动的帮你使用穷举法来将所用的参数都运行一遍。决策树中我们常常将最大树深作为需要调节的参数;AdaBoost中将弱分类器的数量作为需要调节的参数。
评分方法
为了确定搜索参数,也就是手动设定的调节的变量的值中,那个是最好的,这时就需要使用一个比较理想的评分方式(这个评分方式是根据实际情况来确定的可能是accuracy、f1-score、f-beta、pricise、recall等)
交叉验证
有了好的评分方式,但是只用一次的结果就能说明某组的参数组合比另外的参数组合好吗?这显然是不严谨的。所以就有了交叉验证这一概念。下面以K折交叉验证为例介绍这一概念。
综合格点搜素与交叉验证得到GridSearchCV
GridSearchCV官网
class sklearn.model_selection.
GridSearchCV
(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch=‘2*n_jobs’, error_score=’raise’, return_train_score=’warn’)
注意:scoring=None 默认为None, cv=None默认为None
Parameters: |
estimator : estimator object.
This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a score function, or scoring must be passed.
param_grid : dict or list of dictionaries
Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings.
scoring : string, callable, list/tuple, dict or None, default: None
A single string (see The scoring parameter: defining model evaluation rules) or a callable (see Defining your scoring strategy from metric functions) to evaluate the predictions on the test set.
For evaluating multiple metrics, either give a list of (unique) strings or a dict with names as keys and callables as values.
NOTE that when using custom scorers, each scorer should return a single value. Metric functions returning a list/array of values can be wrapped into multiple scorers that return one value each.
See Specifying multiple metrics for evaluation for an example.
If None, the estimator’s default scorer (if available) is used.
fit_params : dict, optional
Parameters to pass to the fit method.
Deprecated since version 0.19: fit_params as a constructor argument was deprecated in version 0.19 and will be removed in version 0.21. Pass fit parameters to the fit method instead.
n_jobs : int, default=1
Number of jobs to run in parallel.
pre_dispatch : int, or string, optional
Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be:
- None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs
- An int, giving the exact number of total jobs that are spawned
- A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’
iid : boolean, default=True
If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy. Possible inputs for cv are:
- None, to use the default 3-fold cross validation,
- integer, to specify the number of folds in a (Stratified)KFold,
- An object to be used as a cross-validation generator.
- An iterable yielding train, test splits.
For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass, StratifiedKFold is used. In all other cases, KFold is used.
Refer User Guide for the various cross-validation strategies that can be used here.
refit : boolean, or string, default=True
Refit an estimator using the best found parameters on the whole dataset.
For multiple metric evaluation, this needs to be a string denoting the scorer is used to find the best parameters for refitting the estimator at the end.
The refitted estimator is made available at the best_estimator_ attribute and permits using predict directly on this GridSearchCV instance.
Also for multiple metric evaluation, the attributes best_index_ , best_score_ and best_parameters_ will only be available if refit is set and all of them will be determined w.r.t this specific scorer.
See scoring parameter to know more about multiple metric evaluation.
verbose : integer
Controls the verbosity: the higher, the more messages.
error_score : ‘raise’ (default) or numeric
Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error.
return_train_score : boolean, optional
If False , the cv_results_ attribute will not include training scores.
Current default is 'warn' , which behaves as True in addition to raising a warning when a training score is looked up. That default will be changed to False in 0.21. Computing training scores is used to get insights on how different parameter settings impact the overfitting/underfitting trade-off. However computing the scores on the training set can be computationally expensive and is not strictly required to select the parameters that yield the best generalization performance.
|
Attributes: |
cv_results_ : dict of numpy (masked) ndarrays
A dict with keys as column headers and values as columns, that can be imported into a pandas DataFrame .
For instance the below given table
param_kernel |
param_gamma |
param_degree |
split0_test_score |
… |
rank_t… |
‘poly’ |
– |
2 |
0.8 |
… |
2 |
‘poly’ |
– |
3 |
0.7 |
… |
4 |
‘rbf’ |
0.1 |
– |
0.8 |
… |
3 |
‘rbf’ |
0.2 |
– |
0.9 |
… |
1 |
will be represented by a cv_results_ dict of:
{
'param_kernel': masked_array(data = ['poly', 'poly', 'rbf', 'rbf'],
mask = [False False False False]...)
'param_gamma': masked_array(data = [-- -- 0.1 0.2],
mask = [ True True False False]...),
'param_degree': masked_array(data = [2.0 3.0 -- --],
mask = [False False True True]...),
'split0_test_score' : [0.8, 0.7, 0.8, 0.9],
'split1_test_score' : [0.82, 0.5, 0.7, 0.78],
'mean_test_score' : [0.81, 0.60, 0.75, 0.82],
'std_test_score' : [0.02, 0.01, 0.03, 0.03],
'rank_test_score' : [2, 4, 3, 1],
'split0_train_score' : [0.8, 0.9, 0.7],
'split1_train_score' : [0.82, 0.5, 0.7],
'mean_train_score' : [0.81, 0.7, 0.7],
'std_train_score' : [0.03, 0.03, 0.04],
'mean_fit_time' : [0.73, 0.63, 0.43, 0.49],
'std_fit_time' : [0.01, 0.02, 0.01, 0.01],
'mean_score_time' : [0.007, 0.06, 0.04, 0.04],
'std_score_time' : [0.001, 0.002, 0.003, 0.005],
'params' : [{'kernel': 'poly', 'degree': 2}, ...],
}
NOTE
The key 'params' is used to store a list of parameter settings dicts for all the parameter candidates.
The mean_fit_time , std_fit_time , mean_score_time and std_score_time are all in seconds.
For multi-metric evaluation, the scores for all the scorers are available in the cv_results_ dict at the keys ending with that scorer’s name ('_' ) instead of '_score' shown above. (‘split0_test_precision’, ‘mean_train_precision’ etc.)
best_estimator_ : estimator or dict
Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False .
See refit parameter for more information on allowed values.
best_score_ : float
Mean cross-validated score of the best_estimator
For multi-metric evaluation, this is present only if refit is specified.
best_params_ : dict
Parameter setting that gave the best results on the hold out data.
For multi-metric evaluation, this is present only if refit is specified.
best_index_ : int
The index (of the cv_results_ arrays) which corresponds to the best candidate parameter setting.
The dict at search.cv_results_['params'][search.best_index_] gives the parameter setting for the best model, that gives the highest mean score (search.best_score_ ).
For multi-metric evaluation, this is present only if refit is specified.
scorer_ : function or a dict
Scorer function used on the held out data to choose the best parameters for the model.
For multi-metric evaluation, this attribute holds the validated scoring dict which maps the scorer key to the scorer callable.
n_splits_ : int
The number of cross-validation splits (folds/iterations).
|
这里附上scoring对应的评分准则
The scoring parameter: defining model evaluation rules
Scoring |
Function |
Comment |
Classification |
|
|
‘accuracy’ |
metrics.accuracy_score |
|
‘average_precision’ |
metrics.average_precision_score |
|
‘f1’ |
metrics.f1_score |
for binary targets |
‘f1_micro’ |
metrics.f1_score |
micro-averaged |
‘f1_macro’ |
metrics.f1_score |
macro-averaged |
‘f1_weighted’ |
metrics.f1_score |
weighted average |
‘f1_samples’ |
metrics.f1_score |
by multilabel sample |
‘neg_log_loss’ |
metrics.log_loss |
requires predict_proba support |
‘precision’ etc. |
metrics.precision_score |
suffixes apply as with ‘f1’ |
‘recall’ etc. |
metrics.recall_score |
suffixes apply as with ‘f1’ |
‘roc_auc’ |
metrics.roc_auc_score |
|
Clustering |
|
|
‘adjusted_mutual_info_score’ |
metrics.adjusted_mutual_info_score |
|
‘adjusted_rand_score’ |
metrics.adjusted_rand_score |
|
‘completeness_score’ |
metrics.completeness_score |
|
‘fowlkes_mallows_score’ |
metrics.fowlkes_mallows_score |
|
‘homogeneity_score’ |
metrics.homogeneity_score |
|
‘mutual_info_score’ |
metrics.mutual_info_score |
|
‘normalized_mutual_info_score’ |
metrics.normalized_mutual_info_score |
|
‘v_measure_score’ |
metrics.v_measure_score |
|
Regression |
|
|
‘explained_variance’ |
metrics.explained_variance_score |
|
‘neg_mean_absolute_error’ |
metrics.mean_absolute_error |
|
‘neg_mean_squared_error’ |
metrics.mean_squared_error |
|
‘neg_mean_squared_log_error’ |
metrics.mean_squared_log_error |
|
‘neg_median_absolute_error’ |
metrics.median_absolute_error |
|
‘r2’ |
metrics.r2_score |
|
Examples
>>> from sklearn import svm, datasets
>>> from sklearn.model_selection import GridSearchCV
>>> iris = datasets.load_iris()
>>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
>>> svc = svm.SVC()
>>> clf = GridSearchCV(svc, parameters)
>>> clf.fit(iris.data, iris.target)
...
GridSearchCV(cv=None, error_score=...,
estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=...,
decision_function_shape='ovr', degree=..., gamma=...,
kernel='rbf', max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=...,
verbose=False),
fit_params=None, iid=..., n_jobs=1,
param_grid=..., pre_dispatch=..., refit=..., return_train_score=...,
scoring=..., verbose=...)
>>> sorted(clf.cv_results_.keys())
...
['mean_fit_time', 'mean_score_time', 'mean_test_score',...
'mean_train_score', 'param_C', 'param_kernel', 'params',...
'rank_test_score', 'split0_test_score',...
'split0_train_score', 'split1_test_score', 'split1_train_score',...
'split2_test_score', 'split2_train_score',...
'std_fit_time', 'std_score_time', 'std_test_score', 'std_train_score'...]
参考资料:http://www.cnblogs.com/liuyu124/p/7332594.html
https://blog.csdn.net/sinat_32547403/article/details/73008127