https://blog.csdn.net/m0_37739193/article/details/74559826
实时统计每天pv,uv的sparkStreaming结合redis结果存入mysql供前端展示
https://blog.csdn.net/ddxygq/article/details/81258643
Flume+Kafka+Storm+Redis构建大数据实时处理系统:实时统计网站PV、UV+展示
flume+kafka+slipstream实现黑名单用户访问实时监测
实战SparkStream+Kafka+Redis实时计算商品销售额https://blog.csdn.net/whzhaochao/article/details/77717660
spark streaming从kafka获取数据,计算处理后存储到redis
https://blog.csdn.net/qq_26222859/article/details/79301205
大数据采集、清洗、处理:使用MapReduce进行离线数据分析完整案例https://blog.51cto.com/xpleaf/2095836
大数据处理目前比较流行的是两种方法,一种是离线处理,一种是在线处理,基本处理架构如下:
在互联网应用中,不管是哪一种处理方式,其基本的数据来源都是日志数据,例如对于web应用来说,则可能是用户的访问日志、用户的点击日志等。
如果对于数据的分析结果在时间上有比较严格的要求,则可以采用在线处理的方式来对数据进行分析,如使用Spark、Storm等进行处理。比较贴切的一个例子是天猫双十一的成交额,在其展板上,我们看到交易额是实时动态进行更新的,对于这种情况,则需要采用在线处理。
当然,如果只是希望得到数据的分析结果,对处理的时间要求不严格,就可以采用离线处理的方式,比如我们可以先将日志数据采集到HDFS中,之后再进一步使用MapReduce、Hive等来对数据进行分析,这也是可行的。
本文主要分享对某个电商网站产生的用户访问日志(access.log)进行离线处理与分析的过程,基于MapReduce的处理方式,最后会统计出某一天不同省份访问该网站的uv与pv。
在我们的场景中,Web应用的部署是如下的架构:
即比较典型的Nginx负载均衡+KeepAlive高可用集群架构
,在每台Web服务器上,都会产生用户的访问日志,业务需求方给出的日志格式如下:
1001 211.167.248.22 eecf0780-2578-4d77-a8d6-e2225e8b9169 40604 1 GET /top HTTP/1.0 408 null null 1523188122767
1003 222.68.207.11 eecf0780-2578-4d77-a8d6-e2225e8b9169 20202 1 GET /tologin HTTP/1.1 504 null Mozilla/5.0 (Windows; U; Windows NT 5.1)Gecko/20070309 Firefox/2.0.0.3 1523188123267
1001 61.53.137.50 c3966af9-8a43-4bda-b58c-c11525ca367b 0 1 GET /update/pass HTTP/1.0 302 null null 1523188123768
1000 221.195.40.145 1aa3b538-2f55-4cd7-9f46-6364fdd1e487 0 0 GET /user/add HTTP/1.1 200 null Mozilla/4.0 (compatible; MSIE 7.0; Windows NT5.2) 1523188124269
1000 121.11.87.171 8b0ea90a-77a5-4034-99ed-403c800263dd 20202 1 GET /top HTTP/1.0 408 null Mozilla/5.0 (Windows; U; Windows NT 5.1)Gecko/20070803 Firefox/1.5.0.12 1523188120263
appid ip mid userid login_type request status http_referer user_agent time
其中:
appid包括 : web:1000,android:1001,ios:1002,ipad:1003
mid: 唯一的id此id第一次会种在浏览器的cookie里。如果存在则不再种。作为浏览器唯一标示。移动端或者pad直接取机器码。
login_type: 登录状态,0未登录、1:登录用户
request: 类似于此种 "GET /userList HTTP/1.1"
status: 请求的状态主要有:200 ok、404 not found、408 Request Timeout、500 Internal Server Error、504 Gateway Timeout等
http_referer:请求该url的上一个url地址。
user_agent: 浏览器的信息,例如:"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106 Safari/537.36"
time: 时间的long格式:1451451433818。
如果备份日志或者日志切割:
vim /opt/cut_nginx.sh
#!/bin/bash
#切割日志
datetime=$(date -d "-1 day" "+%Y%m%d")
log_path="/usr/local/nginx/logs"
pid_path="/usr/local/nginx/logs/nginx.pid"
[ -d $log_path/backup ] || mkdir -p $log_path/backup
if [ -f $pid_path ]
then
mv $log_path/access.log $log_path/backup/access.log-$datetime
kill -USR1 $(cat $pid_path)
find $log_path/backup -mtime +30 | xargs rm -f
#mtime :文件被修改时间 atime:访问时间(文件中的数据库最后被访问的时间) ctime:改变时间(文件的元数据发生变化。比如权限,所有者等)
else
echo "Error,Nginx is not working!" | tee -a /var/log/messages
fi
chmod +x /opt/cut_nginx.sh
crontab -e 设置定时任务
0 0 * * * /opt/cut_nginx.sh
public class SimulateData {
public static void main(String[] args) {
BufferedWriter bw = null;
try {
bw = new BufferedWriter(new FileWriter("G:\\Scala\\实时统计每日的品类的点击次数\\data.txt"));
int i = 0;
while (i < 20000){
long time = System.currentTimeMillis();
int categoryid = new Random().nextInt(23);
bw.write("ver=1&en=e_pv&pl=website&sdk=js&b_rst=1920*1080&u_ud=12GH4079-223E-4A57-AC60-C1A04D8F7A2F&l=zh-CN&u_sd=8E9559B3-DA35-44E1-AC98-85EB37D1F263&c_time="+time+"&p_url=http://list.iqiyi.com/www/"+categoryid+"/---.html");
bw.newLine();
i++;
}
} catch (IOException e) {
e.printStackTrace();
}finally {
try {
bw.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
/*
ver=1&en=e_pv&pl=website&sdk=js&b_rst=1920*1080&u_ud=12GH4079-223E-4A57-AC60-C1A04D8F7A2F&l=zh-CN&u_sd=8E9559B3-DA35-44E1-AC98-85EB37D1F263&c_time=1526975174569&p_url=http://list.iqiyi.com/www/9/---.html
ver=1&en=e_pv&pl=website&sdk=js&b_rst=1920*1080&u_ud=12GH4079-223E-4A57-AC60-C1A04D8F7A2F&l=zh-CN&u_sd=8E9559B3-DA35-44E1-AC98-85EB37D1F263&c_time=1526975174570&p_url=http://list.iqiyi.com/www/4/---.html
ver=1&en=e_pv&pl=website&sdk=js&b_rst=1920*1080&u_ud=12GH4079-223E-4A57-AC60-C1A04D8F7A2F&l=zh-CN&u_sd=8E9559B3-DA35-44E1-AC98-85EB37D1F263&c_time=1526975174570&p_url=http://list.iqiyi.com/www/10/---.html
*/
模拟数据实时的写入data.log:需要一直启动着:
#!/bin/bash
cat demo.csv | while read line
do
echo "$line" >> data.log
sleep 1
done
/**
* 这里产生数据,就会发送给kafka,kafka那边启动消费者,就会接收到数据,这一步是用来测试生成数据和消费数据没有问题的,确定没问题后要关闭消费者,
* 启动OnlineBBSUserLogss.java的类作为消费者,就会按pv,uv等方式处理这些数据。
* 因为一个topic只能有一个消费者,所以启动程序前必须关闭kafka方式启动的消费者(我这里没有关闭关闭kafka方式启动的消费者也没正常啊)
*/
public class SparkStreamingDataManuallyProducerForKafkas extends Thread{
//具体的论坛频道
static String[] channelNames = new String[]{
"Spark","Scala","Kafka","Flink","Hadoop","Storm",
"Hive","Impala","HBase","ML"
};
//用户的两种行为模式
static String[] actionNames = new String[]{"View", "Register"};
private static Producer producerForKafka;
private static String dateToday;
private static Random random;
//2、作为线程而言,要复写run方法,先写业务逻辑,再写控制
@Override
public void run() {
int counter = 0;//搞500条
while(true){//模拟实际情况,不断循环,异步过程,不可能是同步过程
counter++;
String userLog = userlogs();
System.out.println("product:"+userLog);
//"test"为topic
producerForKafka.send(new KeyedMessage("test", userLog));
if(0 == counter%500){
counter = 0;
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
}
private static String userlogs() {
StringBuffer userLogBuffer = new StringBuffer("");
int[] unregisteredUsers = new int[]{1, 2, 3, 4, 5, 6, 7, 8};
long timestamp = new Date().getTime();
Long userID = 0L;
long pageID = 0L;
//随机生成的用户ID
if(unregisteredUsers[random.nextInt(8)] == 1) {
userID = null;
} else {
userID = (long) random.nextInt((int) 2000);
}
//随机生成的页面ID
pageID = random.nextInt((int) 2000);
//随机生成Channel
String channel = channelNames[random.nextInt(10)];
//随机生成action行为
String action = actionNames[random.nextInt(2)];
userLogBuffer.append(dateToday)
.append("\t")
.append(timestamp)
.append("\t")
.append(userID)
.append("\t")
.append(pageID)
.append("\t")
.append(channel)
.append("\t")
.append(action); //这里不要加\n换行符,因为kafka自己会换行,再append一个换行符,消费者那边就会处理不出数据
return userLogBuffer.toString();
}
public static void main(String[] args) throws Exception {
dateToday = new SimpleDateFormat("yyyy-MM-dd").format(new Date());
random = new Random();
Properties props = new Properties();
props.put("zk.connect", "h71:2181,h72:2181,h73:2181");
props.put("metadata.broker.list","h71:9092,h72:9092,h73:9092");
props.put("serializer.class", "kafka.serializer.StringEncoder");
ProducerConfig config = new ProducerConfig(props);
producerForKafka = new Producer(config);
new SparkStreamingDataManuallyProducerForKafkas().start();
}
}
/**
product:2017-06-20 1497948113827 633 1345 Hive View
product:2017-06-20 1497948113828 957 1381 Hadoop Register
product:2017-06-20 1497948113831 300 1781 Spark View
product:2017-06-20 1497948113832 1244 1076 Hadoop Register
**/
数据采集工作:使用Flume对于用户访问日志的采集,将采集的数据保存到HDFS中 (离线)、发送数据到kafka(实时)
从data.log文件中读取实时数据到kafka:
第一步:配置Flume文件:(file2kafka.properties)
a1.sources = r1
a1.sinks = k1
a1.channels =c1
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /home/hadoop/data.log
a1.channel.c1 = memory
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.topic = aura
a1.sinks.k1.brokerList = hodoop02:9092
a1.sinks.k1.requiredAcks = 1
a1.sinks.k1.batchSize = 5
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
[hadoop@hadoop02 apache-flume-1.8.0-bin]$
bin/flume-ng agent --conf conf --conf-file /usr/local/flume/example/file2kafka.properties --name a1 -Dflume.root.logger=INFO,console
[hadoop@hadoop03 kafka_2.11-1.0.0]$
bin/kafka-console-consumer.sh --zookeeper hadoop:2181 --from-beginning --topic aura
4.3.3 执行MapReduce程序
将上面的mr程序打包后上传到我们的Hadoop环境中,这里,对2018-04-08
这一天产生的日志数据进行清洗,执行如下命令:
yarn jar data-extract-clean-analysis-1.0-SNAPSHOT-jar-with-dependencies.jar\
cn.xpleaf.dataClean.mr.job.AccessLogCleanJob \
hdfs://ns1/input/data-clean/access/2018/04/08 \
hdfs://ns1/output/data-clean/access
http://blog.csdn.net/whzhaochao/article/details/77717660
object OrderConsumer {
//Redis配置
val dbIndex = 0
//每件商品总销售额
val orderTotalKey = "app::order::total"
//每件商品上一分钟销售额
val oneMinTotalKey = "app::order::product"
//总销售额
val totalKey = "app::order::all"
def main(args: Array[String]): Unit = {
// 创建 StreamingContext 时间片为1秒
val conf = new SparkConf().setMaster("local").setAppName("UserClickCountStat")
val ssc = new StreamingContext(conf, Seconds(1))
// Kafka 配置
val topics = Set("order")
val brokers = "127.0.0.1:9092"
val kafkaParams = Map[String, String](
"metadata.broker.list" -> brokers,
"serializer.class" -> "kafka.serializer.StringEncoder")
// 创建一个 direct stream
val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
//解析JSON
val events = kafkaStream.flatMap(line => Some(JSON.parseObject(line._2)))
// 按ID分组统计个数与价格总合
val orders = events.map(x => (x.getString("id"), x.getLong("price"))).groupByKey().map(x => (x._1, x._2.size, x._2.reduceLeft(_ + _)))
//输出
orders.foreachRDD(x =>
x.foreachPartition(partition =>
partition.foreach(x => {
println("id=" + x._1 + " count=" + x._2 + " price=" + x._3)
//保存到Redis中
val jedis = RedisClient.pool.getResource
jedis.select(dbIndex)
//每个商品销售额累加
jedis.hincrBy(orderTotalKey, x._1, x._3)
//上一分钟第每个商品销售额
jedis.hset(oneMinTotalKey, x._1.toString, x._3.toString)
//总销售额累加
jedis.incrBy(totalKey, x._3)
RedisClient.pool.returnResource(jedis)
})
))
ssc.start()
ssc.awaitTermination()
}
}
/*
id=4 count=3 price=7208
id=8 count=2 price=10152
id=7 count=1 price=6928
id=5 count=1 price=3327
id=6 count=3 price=20483
id=0 count=2 price=9882
*/
Redis客户端
object RedisClient extends Serializable {
val redisHost = "127.0.0.1"
val redisPort = 6379
val redisTimeout = 30000
lazy val pool = new JedisPool(new GenericObjectPoolConfig(), redisHost, redisPort, redisTimeout)
lazy val hook = new Thread {
override def run = {
println("Execute hook thread: " + this)
pool.destroy()
}
}
sys.addShutdownHook(hook.run)
def main(args: Array[String]): Unit = {
val dbIndex = 0
val jedis = RedisClient.pool.getResource
jedis.select(dbIndex)
jedis.set("test", "1")
println(jedis.get("test"))
RedisClient.pool.returnResource(jedis)
}
}
创建一个HBase表:
实时统计每日的分类的点击次数,存储到HBase(HBase表示如何设计的,rowkey是怎样设计)
rowkey的设计是:时间+name
例:2018.05.22_电影。这样做为rowkey。
public class CategoryRealCount11 {
public static String ck = "G:\\Scala\\spark1711\\day25-项目实时统计\\资料\\新建文件夹";
public static void main(String[] args) {
//初始化程序入口
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("CategoryRealCount");
JavaStreamingContext ssc = new JavaStreamingContext(conf,Durations.seconds(3));
ssc.checkpoint(ck);
//读取数据
/*HashMap kafkaParams = new HashMap<>();
kafkaParams.put("metadata.broker.list","hadoop02:9092,hadoop03:9092,hadoop04:9092");*/
Map kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", "192.168.123.102:9092,192.168.123.103:9092");
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", "use_a_separate_group_id_for_each_stream");
kafkaParams.put("auto.offset.reset", "latest");
kafkaParams.put("enable.auto.commit", false);
/*HashSet topics = new HashSet<>();
topics.add("aura");*/
Collection topics = Arrays.asList("aura");
JavaDStream logDStream = KafkaUtils.createDirectStream(
ssc,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.Subscribe(topics, kafkaParams)
).map(new Function, String>() {
@Override
public String call(ConsumerRecord stringStringConsumerRecord) throws Exception {
return stringStringConsumerRecord.value();
}
});
logDStream.mapToPair(new PairFunction() {
@Override
public Tuple2 call(String line) throws Exception {
return new Tuple2(Utils.getKey(line),1L);
}
}).reduceByKey(new Function2() {
@Override
public Long call(Long aLong, Long aLong2) throws Exception {
return aLong + aLong2;
}
}).foreachRDD(new VoidFunction2, Time>() {
@Override
public void call(JavaPairRDD RDD, Time time) throws Exception {
RDD.foreachPartition(new VoidFunction>>() {
@Override
public void call(Iterator> partition) throws Exception {
HBaseDao hBaseDao = HBaseFactory.getHBaseDao();
while (partition.hasNext()){
Tuple2 tuple = partition.next();
hBaseDao.save("aura",tuple._1,"f","name",tuple._2);
System.out.println(tuple._1+" "+ tuple._2);
}
}
});
}
});
/* JavaDStream logDStream;
logDStream = KafkaUtils.createDirectStream(
ssc,
String.class,
String.class,
StringDecoder.class,
topics,
StringDecoder.class,
kafkaParams
).map(new Function, String>() {
@Override
public String call(Tuple2 tuple2) throws Exception {
return tuple2._2;
}
});*/
//代码的逻辑
//启动应用程序
ssc.start();
try {
ssc.awaitTermination();
} catch (InterruptedException e) {
e.printStackTrace();
}
ssc.stop();
}
}
public class Utils {
public static String getKey(String line) {
HashMap map = new HashMap();
map.put("0", "其他");
map.put("1", "电视剧");
map.put("2", "电影");
map.put("3", "综艺");
map.put("4", "动漫");
map.put("5", "纪录片");
map.put("6", "游戏");
map.put("7", "资讯");
map.put("8", "娱乐");
………………
//获取到品类ID
String categoryid = line.split("&")[9].split("/")[4];
//获取到品类的名称
String name = map.get(categoryid);
//获取用户访问数据的时间
String stringTime = line.split("&")[8].split("=")[1];
//获取日期
String date = getDay(Long.valueOf(stringTime));
return date + "_" + name;
}
public static String getDay(long time){
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd");
return simpleDateFormat.format(new Date());
}
}
public class HBaseImpl implements HBaseDao {
HConnection hatablePool = null;
public HBaseImpl(){
Configuration conf = HBaseConfiguration.create();
//HBase自带的zookeeper
conf.set("hbase.zookeeper.quorum","hadoop02:2181");
try {
hatablePool = HConnectionManager.createConnection(conf);
} catch (IOException e) {
e.printStackTrace();
}
}
/**
* 根据表名获取表对象
* @param tableName 表名
* @return 表对象
*/
public HTableInterface getTable(String tableName){
HTableInterface table = null;
try {
table = hatablePool.getTable(tableName);
} catch (IOException e) {
e.printStackTrace();
}
return table;
}
/**
* 往hbase里面插入一条数据
* @param tableName 表名
* @param rowkey rowkey
* @param family 列族
* @param q 品类
* @param value 出现了的次数
* 2018-12-12_电影 f q 19
* updateStateBykey 对内存的要求高一点
* reduceBykey 对内存要求低一点
*/
@Override
public void save(String tableName, String rowkey, String family, String q, long value) {
HTableInterface table = getTable(tableName);
try {
table.incrementColumnValue(rowkey.getBytes(),family.getBytes(),q.getBytes(),value);
} catch (IOException e) {
e.printStackTrace();
}finally {
if (table != null){
try {
table.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
/**
* 根据rowkey 返回数据
* @param tableName 表名
* @param rowkey rowkey
* @return
*/
@Override
public List count(String tableName, String rowkey) {
ArrayList list = new ArrayList<>();
HTableInterface table = getTable(tableName);
PrefixFilter prefixFilter = new PrefixFilter(rowkey.getBytes());//用左查询进行rowkey查询
Scan scan = new Scan();
scan.setFilter(prefixFilter);
try {
ResultScanner scanner = table.getScanner(scan);
for (Result result : scanner){
for (Cell cell : result.rawCells()){
byte[] date_name = CellUtil.cloneRow(cell);
String name = new String(date_name).split("_")[1];
byte[] value = CellUtil.cloneValue(cell);
long count = Bytes.toLong(value);
CategoryClickCount categoryClickCount = new CategoryClickCount(name, count);
list.add(categoryClickCount);
}
}
} catch (IOException e) {
e.printStackTrace();
}finally {
if (table != null){
try {
table.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
return list;
}
}
public class HBaseFactory {
public static HBaseDao getHBaseDao(){
return new HBaseImpl();
}
}
public class Test {
public static void main(String[] args) {
HBaseDao hBaseDao = HBaseFactory.getHBaseDao();
hBaseDao.save("aura", "2018-05-23_电影","f","name",10L);
hBaseDao.save("aura", "2018-05-23_电影","f","name",20L);
hBaseDao.save("aura", "2018-05-21_电视剧","f","name",11L);
hBaseDao.save("aura", "2018-05-21_电视剧","f","name",24L);
hBaseDao.save("aura", "2018-05-23_电视剧","f","name",110L);
hBaseDao.save("aura", "2018-05-23_电视剧","f","name",210L);
List list = hBaseDao.count("aura", "2018-05-21");
for (CategoryClickCount cc : list){
System.out.println(cc.getName() + " "+ cc.getCount());
}
}
}
原文: https://blog.csdn.net/qq_41851454/article/details/80402483
object DauApp {
def main(args: Array[String]): Unit = {
val sparkConf: SparkConf = new SparkConf().setAppName("dau_app").setMaster("local[*]")
val ssc = new StreamingContext(sparkConf, Seconds(5))
val inputDstream: InputDStream[ConsumerRecord[String, String]] = MyKafkaUtil.getKafkaStream(GmallConstant.KAFKA_TOPIC_STARTUP, ssc)
// inputDstream.foreachRDD{rdd=>
// println(rdd.map(_.value()).collect().mkString("\n"))
// }
// val dStream: DStream[String] = inputDstream.map { record =>
// val jsonStr: String = record.value()
// jsonStr
// }
//处理数据,完了,保存偏移量
inputDstream.foreachRDD(rdd => {
//手动指定分区的地方
val ranges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
println("长度=" + ranges.length)
ranges.foreach(println)
val result: RDD[(String, Int)] = rdd.map(_.value()).flatMap(_.split(",")).map((_, 1)).reduceByKey(_ + _)
result.foreach(println)
result.foreachPartition(p => {
val jedis: Jedis = RedisUtil.getJedisClient
p.foreach(rdd2 => {
// 数据数理逻辑
jedis.hincrBy("wc1", rdd2._1, rdd2._2)
})
//把通过hset,把对应的partition和offset写入到redis中
val map = new util.HashMap[String, String]()
for (o <- ranges) {
val offset = o.untilOffset
val partition = o.partition
val topic = o.topic
val group_id = "gmall_consumer_group"
map.put("offset", offset.toString)
jedis.hmset("offsetKey", map)
}
jedis.close()
})
// 把偏移量的Array 写入到mysql中
// ranges.foreach(rdd2 => {
// // 思考,需要保存哪些数据呢? 起始的offset不需要 还需要加上 groupid
// val pstm = conn.prepareStatement("replace into mysqloffset values (?,?,?,?)")
// pstm.setString(1, rdd2.topic)
// pstm.setInt(2, rdd2.partition)
// pstm.setLong(3, rdd2.untilOffset)
// pstm.setString(4, groupId)
// pstm.execute()
// pstm.close()
// })
})
// 转换处理
val startuplogStream: DStream[Startuplog] = inputDstream.map {
record =>
val jsonStr: String = record.value()
val startuplog: Startuplog = JSON.parseObject(jsonStr, classOf[Startuplog])
val date = new Date(startuplog.ts)
val dateStr: String = new SimpleDateFormat("yyyy-MM-dd HH:mm").format(date)
val dateArr: Array[String] = dateStr.split(" ")
startuplog.logDate = dateArr(0)
startuplog.logHour = dateArr(1).split(":")(0)
startuplog.logHourMinute = dateArr(1)
startuplog
}
// 利用redis进行去重过滤
val filteredDstream: DStream[Startuplog] = startuplogStream.transform {
rdd =>
println("过滤前:" + rdd.count())
//driver //周期性执行DataFrame
val curdate: String = new SimpleDateFormat("yyyy-MM-dd").format(new Date)
val jedis: Jedis = RedisUtil.getJedisClient
val key = "dau:" + curdate
val dauSet: util.Set[String] = jedis.smembers(key) //SMEMBERS key 获取集合里面的所有key
val dauBC: Broadcast[util.Set[String]] = ssc.sparkContext.broadcast(dauSet)
val filteredRDD: RDD[Startuplog] = rdd.filter {
startuplog =>
//executor
val dauSet: util.Set[String] = dauBC.value
!dauSet.contains(startuplog.mid)
}
println("过滤后:" + filteredRDD.count())
filteredRDD
}
//去重思路;把相同的mid的数据分成一组 ,每组取第一个
val groupbyMidDstream: DStream[(String, Iterable[Startuplog])] = filteredDstream
.map(startuplog => (startuplog.mid, startuplog))
.groupByKey()
val distinctDstream: DStream[Startuplog] = groupbyMidDstream.flatMap {
case (mid, startulogItr) =>
startulogItr.take(1)
}
// 保存到redis中
distinctDstream.foreachRDD { rdd =>
// redis type set
// key dau:2019-06-03 value : mids
rdd.foreachPartition { startuplogItr =>
//executor
val jedis: Jedis = RedisUtil.getJedisClient
val list: List[Startuplog] = startuplogItr.toList
for (startuplog <- list) {
val key = "dau:" + startuplog.logDate
val value = startuplog.mid
jedis.sadd(key, value)
println(startuplog) //往es中保存
}
MyEsUtil.indexBulk(GmallConstant.ES_INDEX_DAU, list)
jedis.close()
}
}
ssc.start()
ssc.awaitTermination()
}
}