- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- 深度学习相关指标工作笔记
Victor Zhong
AI框架深度学习笔记人工智能
这里写目录标题检测指标iou/Gou/Diou/CiouMSE(MeanSquaredError)(均方误差)(回归问题)交叉熵损失函数(CrossEntropyErrorFunction)(分类问题)检测指标iou/Gou/Diou/CiouIntersectionoverUnion(IoU)是目标检测里一种重要的评价值交并比令人遗憾的是IoU无法优化无重叠的bboxes如果用IoU作为loss
- NV133NV137美光固态闪存NV147NV148
18922804861
数据库
NV133NV137美光固态闪存NV147NV148美光固态闪存技术矩阵深度解析:NV133至NV148的全面较量一、性能参数:数据高速公路的“车速”比拼读写速度:从“乡间小道”到“高铁动脉”美光NV系列固态闪存的核心竞争力在于其读写速度的跃升。以NV158为例,其顺序读取速度可达数千MB/s,加载大型文件(如4K视频、3D建模文件)时,体验如同“在数据高速路上一路绿灯飞驰”。相比之下,传统机械硬
- NV224NV227美光固态闪存NV256NV257
18922804861
性能优化
NV224NV227美光固态闪存NV256NV257美光NV系列固态闪存深度解析:技术、应用与未来趋势在数据存储领域,美光科技(MicronTechnology)凭借其NV系列固态闪存产品,持续引领行业创新。本文将从技术解析、产品评测、行业趋势、应用案例及购买指南五个维度,深入剖析NV224、NV227、NV256、NV257四款产品的核心竞争力与市场价值。一、技术解析:3DNAND工艺与架构创新
- NV183NV185美光固态闪存NV196NV201
18922804861
服务器科技人工智能大数据
美光固态闪存技术深度解析:NV183、NV185、NV196与NV201系列一、技术架构与核心参数对比1.制程工艺与容量布局美光NV183/NV185/NV196/NV201系列采用176层3DNAND技术,通过垂直堆叠提升存储密度。其中:NV183:主打256GB容量段,适用于消费级SSDNV185:可扩展至1TB-2TB范围,面向主流PCIe4.0市场NV196:企业级规格,支持4TB-8TB
- Open3D 点到面的ICP配准算法
AtlasCloud
python点云数据处理算法人工智能python矩阵numpy
目录一、算法原理1、算法概述2、点到平面ICP精配准3、参考文献二、主要函数三、代码实现四、结果展示1、初始位置2、配准结果一、算法原理1、算法概述 点到平面度量通常使用标准非线性最小二乘法来求解,例如Levenberg-Marquardt。点到平面ICP算法的每次迭代通常比点到点算法慢,但收敛速度明显更快。两个点云之间的相对旋转小于30°,在旋转矩阵中用θ替换sinθ,用1替换cosθ实现用线
- cesium-native+OpenGL开发笔记—渲染GIS球
坐标系转换OpenGL坐标系右手坐标系,X轴水平向右,Y轴竖直向上,Z轴指向屏幕外面。Y(绿色,朝上)^|||*---->X(红色,向右)//Z(蓝色,向前)(指向屏幕外)3DTiles坐标系右手坐标系,Z轴朝上Z(蓝色,朝上)^||/Y(绿色,朝屏幕内)|/*---->X(红色,朝右)glTF模型坐标系右手坐标系,Y轴朝上3DTiles和OpenGL坐标系上方向存在差异,实际绘制是在OpenGL
- FastAPI如何玩转安全防护,让黑客望而却步?
url:/posts/c1314c623211c9269f36053179a53d5c/title:FastAPI如何玩转安全防护,让黑客望而却步?date:2025-07-04T18:28:43+08:00lastmod:2025-07-04T18:28:43+08:00author:cmdragonsummary:FastAPI通过内置的OAuth2和JWT支持,提供了开箱即用的安全解决方案,
- Transformer已死?2025年十大替代架构实战评测
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站封面图建议:十大架构3D渲染图环绕碎裂的Transformer图标,背景为动态性能雷达图副标题:实测推理速度/显存占用/长文本能力,附迁移成本决策树一、争议源起:Transformer的时代性局限(2025版)graphLRA[Transformer痛点]-->B[显存黑洞:千亿模型推理需1.6
- unity3d————特殊文件夹
无敌最俊朗@
Unity四部曲之基础篇unity游戏学习c#游戏引擎
1.工程路径(Application.dataPath)获取方式:Application.dataPath使用场景:主要在编辑模式下使用,发布后路径不再有效。注意:发布后的游戏不会使用该路径。2.Resources资源文件夹路径获取:通常不直接获取路径,使用Resources相关API加载资源。创建:需要手动创建。作用:存放需要通过Resources相关API动态加载的资源。所有文件都会被打包,并
- 光伏发电园区管理系统 - Three.js + Django 实现方案
小赖同学啊
testTechnologyPreciousjavascriptdjango开发语言
光伏发电园区管理系统-Three.js+Django实现方案我将设计一个基于Three.js和Django的光伏发电园区管理系统,包含3D可视化、实时监控和数据分析功能。系统架构设计API请求数据存储数据存储数据存储获取获取前端-Three.jsDjango后端数据库外部API光伏设备数据气象数据发电数据实时天气电价信息技术栈与依赖前端:Three.js(r128)-3D渲染Chart.js-数据
- RICE模型或KANO模型在具体UI评审时的运用经验
Alex艾力的IT数字空间
设计规范前端框架原型模式产品经理需求分析ux制造
模型是抽象的产物,结合场景才好说明(数据为非精确实际数据,仅供参考,勿照搬)。案例一:RICE模型解决「支付流程优化」vs「首页动效升级」优先级争议背景:APP电商模块在迭代中面临两个需求冲突——支付团队主张优化支付失败提示(减少用户流失),设计团队提议增加首页3D商品动效(提升视觉吸引力)。双方争执不下。应用过程:RICE模型量化评估(参考):支付优化:Reach(覆盖人数):支付流程涉及100
- 展锐 ISP 模块功能特点与应用场景评估:轻量化影像处理方案的实战能力分析
展锐ISP模块功能特点与应用场景评估:轻量化影像处理方案的实战能力分析关键词:展锐ISP、图像信号处理、3DNR、HDR合成、YUV输出、图像管线、降噪算法、调色引擎、应用场景评估、移动终端影像系统摘要:作为国产SoC平台中的关键影像处理核心,展锐ISP(ImageSignalProcessor)聚焦轻量化、低功耗与快速集成三大特性,广泛应用于中低端移动终端、AIoT摄像头及定制化影像设备。相较于
- 【前端】【数字孪生】基础知识:数字孪生 3D 模型去哪里找?Three.js 辅助组件库有哪些?模型的动画是黑盒吗?怎么控制?
患得患失949
数字孪生前端3djavascript
前端数字孪生全解:Vue与Three.js的最佳实践、3D模型网站推荐、自带动画控制详解在数字孪生(DigitalTwin)和三维可视化逐渐成为前端热点的今天,很多开发者开始转向WebGL+前端框架的集成实践,最常见的组合包括:React+Three.js(通过@react-three/fiber与@react-three/drei)Vue+Three.js(本文重点)本文将从以下几个维度全面解析
- 目标检测:从基础原理到前沿技术全面解析
随机森林404
计算机视觉目标检测人工智能计算机视觉
引言在计算机视觉领域,目标检测是一项核心且极具挑战性的任务,它不仅要识别图像中有什么物体,还要确定这些物体在图像中的具体位置。随着人工智能技术的快速发展,目标检测已成为智能监控、自动驾驶、医疗影像分析等众多应用的基础技术。本文将全面介绍目标检测的基础概念、发展历程、关键技术、实践应用以及未来趋势,为读者提供系统性的知识框架。第一章目标检测概述1.1目标检测的定义与重要性目标检测(ObjectDet
- 水下目标检测:突破与创新
加油吧zkf
目标跟踪人工智能计算机视觉
水下目标检测技术背景水下环境带来独特挑战:光线衰减导致对比度降低,散射引发图像模糊,色偏使颜色失真。动态水流造成目标形变,小目标(如10×10像素海胆)检测困难。声呐与光学数据融合可提升精度,但多模态对齐仍是技术难点。核心算法实现要点图像预处理直方图均衡化与Retinex算法结合改善对比度和色偏:defsingle_scale_retinex(img,sigma):retinex=np.log10
- YOLOv11 改进策略 | GFPN:超越 BiFPN,跳层与跨尺度连接重塑特征金字塔
YOLOv11改进策略|GFPN:超越BiFPN,跳层与跨尺度连接重塑特征金字塔!介绍颈部网络(Neck)在目标检测任务中扮演着至关重要的角色,它负责有效地融合来自骨干网络(Backbone)不同层级的特征图,为检测头部(Head)提供包含丰富语义和空间信息的多尺度特征。FPN、PANet和BiFPN等结构是特征金字塔融合的代表。BiFPN作为其中的佼佼者,通过双向连接和加权融合取得了优异的性能。
- 安装Hadoop集群&入门&源码编译
只年
大数据Hadoophadoop大数据分布式
安装Hadoop集群完全分布式先决条件准备三台机器NameStaticIPDESCbigdata102192.168.1.102DataNode、NodeManager、NameNodebigdata103192.168.1.103DataNode、NodeManager、ResourceManagerbigdata104192.168.1.104DataNode、NodeManager、Seco
- crdb_ado_res_nl.dll ContextManager.dll CATGmoOperators.dll crdb_fielddef_res_es.dll CATInt3DMap.
a***0738
microsoftwindowsvisualstudio
在使用电脑系统时经常会出现丢失找不到某些文件的情况,由于很多常用软件都是采用MicrosoftVisualStudio编写的,所以这类软件的运行需要依赖微软VisualC++运行库,比如像QQ、迅雷、Adobe软件等等,如果没有安装VC++运行库或者安装的版本不完整,就可能会导致这些软件启动时报错,提示缺少库文件。如果我们遇到关于文件在系统使用过程中提示缺少找不到的情况,如果文件是属于运行库文件的
- Vue3高级-第二十六篇:Vue3 与 WebGL 的融合探索
程序员勇哥
前端全套教程vue.js前端javascript开发语言前端框架
Vue3高级-第二十六篇:Vue3与WebGL的融合探索1.WebGL基础与Vue3集成准备深入了解WebGL的概念、功能与应用场景概念:WebGL(WebGraphicsLibrary)是一种用于在网页上进行2D和3D图形渲染的JavaScriptAPI。它基于OpenGLES2.0规范,允许开发者在浏览器环境中直接操作图形硬件,无需安装额外插件。WebGL通过在浏览器中创建一个绘图上下文,利用
- 超详细yolov8/11-segment实例分割全流程概述:配置环境、数据标注、训练、验证/预测、onnx部署(c++/python)详解
因为yolo的检测/分割/姿态/旋转/分类模型的环境配置、训练、推理预测等命令非常类似,这里不再详细叙述,主要参考**【YOLOv8/11-detect目标检测全流程教程】**,下面有相关链接,这里主要针对数据标注、格式转换、模型部署等不同细节部分;【YOLOv8/11-detect目标检测全流程教程】超详细yolo8/11-detect目标检测全流程概述:配置环境、数据标注、训练、验证/预测、o
- 创新引入HAttention模块:提升YOLOv8小目标检测精度【YOLOv8】
程序员Gloria
YOLOv8YOLO目标跟踪人工智能目标检测
文章目录创新引入HAttention模块:提升YOLOv8小目标检测精度【YOLOv8】引言1.YOLOv8模型概述1.1YOLOv8架构1.2YOLOv8小目标检测的挑战2.HAttention模块:原理与设计2.1HAttention模块的动机2.2HAttention模块的结构3.HAttention模块在YOLOv8中的应用3.1引入HAttention模块3.2YOLOv8架构修改3.3
- YOLOv11深度解析:Ultralytics新一代目标检测架构创新与实战指南
芯作者
D2:YOLOYOLO神经网络计算机视觉
2024年Ultralytics重磅推出YOLOv11**:在精度与速度的平衡木上再进一步,参数减少22%,推理速度提升2%,多任务支持全面升级!一、YOLOv11核心创新:轻量化与注意力机制的完美融合YOLOv11并非颠覆性重构,而是通过模块级优化实现“少参数、高精度、快推理”的目标。其三大创新点如下:1.1C3k2模块:动态卷积核的灵活设计取代YOLOv8的C2f模块,C3k2通过参数c3k动
- babylon-vrm-loader:让3D模型动起来的强大工具
纪栋岑Philomena
babylon-vrm-loader:让3D模型动起来的强大工具babylon-vrm-loaderglTFVRMextensionLoaderforbabylon.js项目地址:https://gitcode.com/gh_mirrors/ba/babylon-vrm-loader在现代网页开发中,3D渲染和交互已成为吸引用户注意力的重要手段。babylon-vrm-loader是一个开源项目,
- CppCon 2018 学习:RAPID PROTOTYPING OF GRAPHICS SHADERS IN
虾球xz
CppCon学习c++开发语言
这段内容在讲**着色器(Shader)**的基础概念,尤其是它在现代GPU(图形处理单元)中的作用。以下是逐条解释与理解:“Depictingdepthperceptionin3Dmodelsorillustrationsbyvaryinglevelsofdarkness”—Wikipedia这是**光照/阴影(shading)**的定义,来自维基百科。意思是:为了在二维图像中表现三维感,我们通过
- 用WebGPU实现现代Web3D渲染——突破传统性能瓶颈的解决方案
桂月二二
wasmfastapi开发语言rust
引言随着Web技术的不断发展,Web3D应用的需求不断增加。从游戏引擎到可视化工具,3D渲染技术正在被广泛地应用。然而,传统WebGL技术在性能、效率和灵活性上仍存在局限性。而WebGPU作为一种新兴的Web标准,为现代3D渲染提供了强大而高效的解决方案。本文将探讨如何使用WebGPU实现高效的Web3D渲染,逐步构建一个简单的渲染引擎,并介绍其在性能和功能上的优势。背景WebGPU是一种跨平台的
- 嵌入式学习之Linux入门篇笔记——8,Linux帮助手册讲解
玄奕子
嵌入式学习之Linux入门篇linux学习笔记ubuntu
配套视频学习链接:http://【【北京迅为】嵌入式学习之Linux入门篇】https://www.bilibili.com/video/BV1M7411m7wT/?p=4&share_source=copy_web&vd_source=a0ef2c4953d33a9260910aaea45eaec81.Linux帮助手册使用man命令打开,使用手册一共有九页。(按Q退出帮助手册)1.可执行的程序
- ConvNeXT:面向 2020 年代的卷积神经网络
摘要视觉识别的“咆哮二十年代”始于VisionTransformer(ViT)的引入,ViT很快取代了ConvNet,成为图像分类任务中的最新最强模型。然而,vanillaViT在应用于目标检测、语义分割等通用计算机视觉任务时面临困难。HierarchicalTransformer(如SwinTransformer)重新引入了若干ConvNet的先验知识,使Transformer成为实用的通用视觉
- 目标检测新纪元:DETR到Mamba实战解析
加油吧zkf
图像处理python分类人工智能目标检测
【实战分享】目标检测的“后DEⱯ”时代:DETR/DINO/RT-DETR及新型骨干网络探索(含示例代码)目标检测从YOLO、FasterR-CNN到Transformer结构的DETR,再到DINO、RT-DETR,近两年出现了许多新趋势:更高效的端到端结构、更少的手工设计(比如不再需要NMS)、以及新型轻量化骨干网络(比如Mamba、ConvNeXt、ViT等)被引入检测任务中。作为从事目标检
- OpenCV中DPM(Deformable Part Model)目标检测类cv::dpm::DPMDetector
村北头的码农
OpenCVopencv目标检测人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV中用于基于可变形部件模型(DPM)的目标检测器,主要用于行人、人脸等目标的检测。它是一种传统的基于特征的目标检测方法,不依赖深度学习,而是使用HOG特征+部件模型来进行检测。示例代码#include#include#includeusingnamesp
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那