目前。32位的x86架构是最受欢迎的计算机架构。在这种架构中,传统上Linux内核将4GB的虚拟内存地址空间分为3GB用户内存和1GB内核空间。
在传统大小的32位系统上,这意味着内核可以将所有物理内存映射到其地址空间,这使得以下内容成为可能:
在其他架构上,例如MIPS处理器的架构,硬件本身只能直接访问物理内存的一部分。 32位MIPS处理器通常在512 MiB内存中运行其操作系统,该内存具有虚拟和物理地址之间的直接映射。 必须通过转换后备缓冲区(TLB)访问所有其他内存,并且它无法同时将所有4 GiB物理内存映射到其地址。 因此,它对高内存支持的需求甚至可能比x86架构更加可怕。
然而,许多人坚持在这样的32位系统上使用超过1GB的物理内存。 这使得Linux内核必须跳过一些有趣的环节......
基本上系统使用以下策略:
使用函数kmap(),kunmap(),kmap_atomic()和kunmap_atomic()完成将数据从highmem临时映射到内核虚拟内存。
函数kmap()为您提供持久映射,即。 在您安排和/或移动到另一个CPU之后仍然存在的一个。 但是,这种映射是在全局锁定下分配的,这可能是SMP系统的瓶颈。 不鼓励使用kmap()函数。
通过使用无锁的kmap_atomic()可以获得良好的SMP可伸缩性。 kmap_atomic()可以在没有任何锁定的情况下运行的原因是页面被映射到固定地址,该地址对于您运行的CPU是专用的。 当然,这意味着您无法在设置此类映射和使用它之间进行计划,因为在同一CPU上运行的另一个进程可能也需要相同的地址! 这是2.6内核中使用最多的highmem映射类型。
在具有2GB内存的系统上,稍多于一半的内存将位于高内存(ZONE_HIGHMEM)中,而少于一半的内存将位于所谓的低内存(ZONE_NORMAL和ZONE_DMA)中。 重要的是内核从两个区域分配进程和页面缓存内存,并且页面输出代码按两个区域的大小按比例回收两个区域中的页面。
原因是应用程序可能想要使用所有2GB的内存。 如果系统最终分配和回收高内存比低内存快得多,那么应用程序将部分数据从高内存换出,而不是驻留在低内存中。 但是,系统平衡高内存和低内存之间的分配和回收越好,应用程序的有效可用内存大小越接近完整的2GB。
在具有大量highmem(超过8GB)的32位系统上运行的主要危险是内核最终可能需要分配比ZONE_NORMAL更多的数据。这意味着即使仍有大量高内存空闲,机器也可以有效地耗尽内存。
另一个问题是系统将更积极地回收内核数据结构,如缓存的inode,缓冲区头和其他可以帮助系统性能的缓存。
第三个问题是,在32位系统上,没有任何进程能够有效地使用超过3GB的内存。这意味着购买超过4GB的内存仅在系统上没有任何进程需要所有内存时才有用。
出于这些原因,建议如果您购买的内存超过4GB的系统,则应考虑使用64位CPU并安装64位操作系统。在2005年,32位和64位系统之间的价格差异实际上是不存在的,64位x86-64系统仍然可以运行32位应用程序,因此不再需要经历高精度的痛苦......
翻译自:Linux highMemory
===============================
转载自:Linux内核高端内存
摘要:Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对应的数据可能不在内存中。用户空间的内存映射采用段页式,而内核空间有自己的规则;本文旨在探讨内核空间的地址映射。
Linux内核地址空间划分
通常32位Linux内核虚拟地址空间划分0~3G为用户空间,3~4G为内核空间(注意,内核可以使用的线性地址只有1G)。注意这里是32位内核地址空间划分,64位内核地址空间划分是不同的。
Linux内核高端内存的由来
当内核模块代码或线程访问内存时,代码中的内存地址都为逻辑地址,而对应到真正的物理内存地址,需要地址一对一的映射,如逻辑地址0xc0000003对应的物理地址为0×3,0xc0000004对应的物理地址为0×4,… …,逻辑地址与物理地址对应的关系为
物理地址 = 逻辑地址 – 0xC0000000:这是内核地址空间的地址转换关系,注意内核的虚拟地址在“高端”,但是ta映射的物理内存地址在低端。
逻辑地址 | 物理内存地址 |
0xc0000000 | 0×0 |
0xc0000001 | 0×1 |
0xc0000002 | 0×2 |
0xc0000003 | 0×3 |
… | … |
0xe0000000 | 0×20000000 |
… | … |
0xffffffff | 0×40000000 ?? |
假 设按照上述简单的地址映射关系,那么内核逻辑地址空间访问为0xc0000000 ~ 0xffffffff,那么对应的物理内存范围就为0×0 ~ 0×40000000,即只能访问1G物理内存。若机器中安装8G物理内存,那么内核就只能访问前1G物理内存,后面7G物理内存将会无法访问,因为内核 的地址空间已经全部映射到物理内存地址范围0×0 ~ 0×40000000。即使安装了8G物理内存,那么物理地址为0×40000001的内存,内核该怎么去访问呢?代码中必须要有内存逻辑地址 的,0xc0000000 ~ 0xffffffff的地址空间已经被用完了,所以无法访问物理地址0×40000000以后的内存。
显 然不能将内核地址空间0xc0000000 ~ 0xfffffff全部用来简单的地址映射。因此x86架构中将内核地址空间划分三部分:ZONE_DMA、ZONE_NORMAL和 ZONE_HIGHMEM。ZONE_HIGHMEM即为高端内存,这就是内存高端内存概念的由来。
在x86结构中,三种类型的区域(从3G开始计算)如下:
ZONE_DMA 内存开始的16MB
ZONE_NORMAL 16MB~896MB
ZONE_HIGHMEM 896MB ~ 结束(1G)
Linux内核高端内存的理解
前 面我们解释了高端内存的由来。 Linux将内核地址空间划分为三部分ZONE_DMA、ZONE_NORMAL和ZONE_HIGHMEM,高端内存HIGH_MEM地址空间范围为 0xF8000000 ~ 0xFFFFFFFF(896MB~1024MB)。那么如内核是如何借助128MB高端内存地址空间是如何实现访问可以所有物理内存?
当内核想访问高于896MB物理地址内存时,从0xF8000000 ~ 0xFFFFFFFF地址空间范围内找一段相应大小空闲的逻辑地址空间,借用一会。借用这段逻辑地址空间,建立映射到想访问的那段物理内存(即填充内核PTE页面表),临时用一会,用完后归还。这样别人也可以借用这段地址空间访问其他物理内存,实现了使用有限的地址空间,访问所有所有物理内存。如下图。
例 如内核想访问2G开始的一段大小为1MB的物理内存,即物理地址范围为0×80000000 ~ 0x800FFFFF。访问之前先找到一段1MB大小的空闲地址空间,假设找到的空闲地址空间为0xF8700000 ~ 0xF87FFFFF,用这1MB的逻辑地址空间映射到物理地址空间0×80000000 ~ 0x800FFFFF的内存。映射关系如下:
逻辑地址 | 物理内存地址 |
0xF8700000 | 0×80000000 |
0xF8700001 | 0×80000001 |
0xF8700002 | 0×80000002 |
… | … |
0xF87FFFFF | 0x800FFFFF |
当内核访问完0×80000000 ~ 0x800FFFFF物理内存后,就将0xF8700000 ~ 0xF87FFFFF内核线性空间释放。这样其他进程或代码也可以使用0xF8700000 ~ 0xF87FFFFF这段地址访问其他物理内存。
从上面的描述,我们可以知道高端内存的最基本思想:借一段地址空间,建立临时地址映射,用完后释放,达到这段地址空间可以循环使用,访问所有物理内存。
看到这里,不禁有人会问:万一有内核进程或模块一直占用某段逻辑地址空间不释放,怎么办?若真的出现的这种情况,则内核的高端内存地址空间越来越紧张,若都被占用不释放,则没有建立映射到物理内存都无法访问了。
Linux内核高端内存的划分
内核将高端内存划分为3部分:VMALLOC_START~VMALLOC_END、KMAP_BASE~FIXADDR_START和FIXADDR_START~4G。
对 于高端内存,可以通过 alloc_page() 或者其它函数获得对应的 page,但是要想访问实际物理内存,还得把 page 转为线性地址才行(为什么?想想 MMU 是如何访问物理内存的),也就是说,我们需要为高端内存对应的 page 找一个线性空间,这个过程称为高端内存映射。
对应高端内存的3部分,高端内存映射有三种方式:
映射到”内核动态映射空间”(noncontiguous memory allocation)
这种方式很简单,因为通过 vmalloc() ,在”内核动态映射空间”申请内存的时候,就可能从高端内存获得页面(参看 vmalloc 的实现),因此说高端内存有可能映射到”内核动态映射空间”中。
持久内核映射(permanent kernel mapping)
如果是通过 alloc_page() 获得了高端内存对应的 page,如何给它找个线性空间?
内核专门为此留出一块线性空间,从 PKMAP_BASE 到 FIXADDR_START ,用于映射高端内存。在 2.6内核上,这个地址范围是 4G-8M 到 4G-4M 之间。这个空间起叫”内核永久映射空间”或者”永久内核映射空间”。这个空间和其它空间使用同样的页目录表,对于内核来说,就是 swapper_pg_dir,对普通进程来说,通过 CR3 寄存器指向。通常情况下,这个空间是 4M 大小,因此仅仅需要一个页表即可,内核通过来 pkmap_page_table 寻找这个页表。通过 kmap(),可以把一个 page 映射到这个空间来。由于这个空间是 4M 大小,最多能同时映射 1024 个 page。因此,对于不使用的的 page,及应该时从这个空间释放掉(也就是解除映射关系),通过 kunmap() ,可以把一个 page 对应的线性地址从这个空间释放出来。
临时映射(temporary kernel mapping)
内核在 FIXADDR_START 到 FIXADDR_TOP 之间保留了一些线性空间用于特殊需求。这个空间称为”固定映射空间”在这个空间中,有一部分用于高端内存的临时映射。
这块空间具有如下特点:
(1)每个 CPU 占用一块空间
(2)在每个 CPU 占用的那块空间中,又分为多个小空间,每个小空间大小是 1 个 page,每个小空间用于一个目的,这些目的定义在 kmap_types.h 中的 km_type 中。
当要进行一次临时映射的时候,需要指定映射的目的,根据映射目的,可以找到对应的小空间,然后把这个空间的地址作为映射地址。这意味着一次临时映射会导致以前的映射被覆盖。通过 kmap_atomic() 可实现临时映射。
常见问题:
1、用户空间(进程)是否有高端内存概念?
用户进程没有高端内存概念。只有在内核空间才存在高端内存。用户进程最多只可以访问3G物理内存,而内核进程可以访问所有物理内存。
2、64位内核中有高端内存吗?
目前现实中,64位Linux内核不存在高端内存,因为64位内核可以支持超过512GB内存。若机器安装的物理内存超过内核地址空间范围,就会存在高端内存。
3、用户进程能访问多少物理内存?内核代码能访问多少物理内存?
32位系统用户进程最大可以访问3GB,内核代码可以访问所有物理内存。
64位系统用户进程最大可以访问超过512GB,内核代码可以访问所有物理内存。
4、高端内存和物理地址、逻辑地址、线性地址的关系?
高端内存只和物理地址有关系,和线性地址、逻辑地址没有直接关系。
5、为什么不把所有的地址空间都分配给内核?
若把所有地址空间都给内存,那么用户进程怎么使用内存?怎么保证内核使用内存和用户进程不起冲突?