点击上方,选择星标或置顶,每天给你送干货!
阅读大概需要16分钟
跟随小博主,每天进步一丢丢
整理:专知
KDD 2019
1、Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks
作者:Wei-Lin Chiang; Xuanqing Liu; Si Si; Yang Li; Samy Bengio; Cho-Jui Hsieh;
地址:https://arxiv.org/pdf/1905.07953.pdf
2、Conditional Random Field Enhanced Graph Convolutional Neural Networks
作者:Hongchang Gao; Jian Pei; Heng Huang;
地址:
https://www.kdd.org/kdd2019/accepted-papers/view/conditional-random-field-enhanced-graph-convolutional-neural-networks
3、DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification
作者:Jun Wu; Jingrui He; Jiejun Xu;
地址:
https://arxiv.org/abs/1906.02319?context=cs
4、GCN-MF: Disease-Gene Association Identification By Graph Convolutional Networks and Matrix Factorization
作者:Peng Han; Peng Yang; Peilin Zhao; Shuo Shang; Yong Liu; Jiayu Zhou; Xin Gao; Panos Kalnis;
地址:
https://www.kdd.org/kdd2019/accepted-papers/view/cluster-gcn-an-efficient-algorithm-for-training-deep-and-large-graph-convol
5、Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks
作者:Namyong Park; Andrey Kan; Xin Luna Dong; Tong Zhao; Christos Faloutsos;
地址:https://arxiv.org/abs/1905.08865
6、Graph Recurrent Networks with Attributed Random Walks
作者:Xiao Huang; Qingquan Song; Yuening Li; Xia Hu;
地址:
https://www.kdd.org/kdd2019/accepted-papers/view/graph-recurrent-networks-with-attributed-random-walks
7、Representation Learning for Attributed Multiplex Heterogeneous Network
作者:Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, Jie Tang
论文:http://t.cn/Ai9I8OPE;
代码:http://t.cn/Ai9I8OPn;
NeurIPS2019
1、GNN Explainer: Generating Explanations for Graph Neural Networks
作者:Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, Jure Leskovec
地址:https://arxiv.org/abs/1903.03894
2、Graph Transformer Networks
作者:Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, Hyunwoo Kim
地址:
http://data.holdenhu.site/papers/graph/graph-transformer-networks.pdf
3、Can Graph Neural Networks Help Logic Reasoning?
作者:Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi, Le Song
地址:
https://kr2ml.github.io/2019/papers/KR2ML_2019_paper_22.pdf
ICCV 2019
1、DeepGCNs: Can GCNs Go as Deep as CNNs?
作者:Guohao Li, Matthias Müller, Ali Thabet, Bernard Ghanem
地址:https://arxiv.org/abs/1904.03751
2. Exploiting Spatial-temporal Relationships for 3D Pose Estimation via Graph Convolutional Networks
作者:Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham, Junsong Yuan, Nadia Magnenat Thalmann;
地址:
https://cse.buffalo.edu/~jsyuan/papers/2019/Exploiting_Spatial-temporal_Relationships_for_3D_Pose_Estimation_via_Graph_Convolutional_Networks.pdf
3、Graph Convolutional Networks for Temporal Action Localization
作者:Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong, Peilin Zhao, Junzhou Huang, Chuang Gan;
地址:https://arxiv.org/abs/1909.03252
代码:https://github.com/alvinzeng/pgcn
4、Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition
作者:Tianshui Chen, Muxin Xu, Xiaolu Hui, Hefeng Wu, Liang Lin;
地址:https://arxiv.org/abs/1908.07325
代码和模型:https://github. com/HCPLab-SYSU/SSGRL
WWW 2019
1、Is a Single Embedding Enough? Learning Node Representations that Capture Multiple Social Contexts
作者:Alessandro Epasto, Bryan Perozzi
地址:http://t.cn/AiukgqNA;
2、NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization
作者:Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, Jie Tang
地址:http://t.cn/AiuF7p97;
3、Graph Neural Networks for Social Recommendation
作者:Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin
地址:http://t.cn/AiuFAzVr;
4、Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems
作者:Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, Guihai Chen
地址:http://t.cn/EiVtzOj;
ICML 2019
1、 Compositional Fairness Constraints for Graph Embeddings
作者:Avishek Joey Bose, William L. Hamilton
地址:http://t.cn/AiukgnqL
2、Graph Matching Networks for Learning the Similarity of Graph Structured Objects
作者:Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, Pushmeet Kohli
地址:http://t.cn/ES9dZYU
3、GMNN: Graph Markov Neural Networks
作者:Meng Qu, Yoshua Bengio, Jian Tang
地址:http://t.cn/EKOJK3x;
4、MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
作者:Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan
地址:http://t.cn/AiuFAY4V;
ACL 2019
1、Cognitive Graph for Multi-Hop Reading Comprehension at Scale
作者:Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, Jie Tang
地址:http://t.cn/EKSfKkr;
2、Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model
作者:Wei Li, Jingjing Xu, Yancheng He, Shengli Yan, Yunfang Wu, Xu Sun
地址:http://t.cn/AiuF26Ve;
3、Dynamically Fused Graph Network for Multi-hop Reasoning
作者:Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, Yong Yu
地址:http://t.cn/EKR7rcy;
4、Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks
作者:Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, Partha Talukdar
论文:http://t.cn/EKR7rcy;
代码:http://t.cn/AiuF2k4G
5、Attention Guided Graph Convolutional Networks for Relation Extraction
作者:Zhijiang Guo,Yan Zhang and Wei Lu
地址:
http://www.statnlp.org/paper/2019/attention-guided-graph-convolutional-networks-relation-extraction.html
6、Encoding Social Information with Graph Convolutional Networks for Political Perspective Detection in News Media
作者:Chang Li, Dan Goldwasser
地址:
https://www.cs.purdue.edu/homes/dgoldwas//downloads/papers/LiG_acl_2019.pdf
ICLR 2020
1、GraphZoom: A Multi-level Spectral Approach for Accurate and Scalable Graph Embedding
作者:Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, Zhuo Feng
地址:
https://arxiv.org/abs/1910.02370?context=cs
2、Strategies for Pre-training Graph Neural Networks
作者:Weihua Hu,Bowen Liu,Joseph Gomes, Marinka Zitnik,Percy Liang, Vijay Pande,,Jure Leskovec
地址:
https://arxiv.org/abs/1905.12265?context=cs.LG
3、Geom-GCN:Geometric Graph Convolutional Networks
作者:Hongbin-Pei,Bingzhe-Wei,Kevin Chen-chuan
地址:
https://openreview.net/forum?id=S1e2agrFvS
4、Contrastive Learning of Structured World Models
作者:Thomas Kipf, Elise van der Pol, Max Welling
地址:https://arxiv.org/abs/1911.12247
5、The Logical Expressiveness of Graph Neural Networks
作者:Pablo Barceló, Egor V. Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, Juan Pablo Silva
地址:
https://openreview.net/forum?id=r1lZ7AEKvB
参考链接:
来源:数据派THU
https://mp.weixin.qq.com/s/61aXpF-ayJseBUzWnc6TZA
方便交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。
方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。
记得备注呦
推荐阅读:
【ACL 2019】腾讯AI Lab解读三大前沿方向及20篇入选论文
【一分钟论文】IJCAI2019 | Self-attentive Biaffine Dependency Parsing
【一分钟论文】 NAACL2019-使用感知句法词表示的句法增强神经机器翻译
【一分钟论文】Semi-supervised Sequence Learning半监督序列学习
【一分钟论文】Deep Biaffine Attention for Neural Dependency Parsing
详解Transition-based Dependency parser基于转移的依存句法解析器
经验 | 初入NLP领域的一些小建议
学术 | 如何写一篇合格的NLP论文
干货 | 那些高产的学者都是怎样工作的?
一个简单有效的联合模型
近年来NLP在法律领域的相关研究工作
让更多的人知道你“在看”