- OpenAI Chatgpt发展历史和Chatgpt-3的研发过程工作原理
roxxo
gpt-3深度学习人工智能chatgpt
ChatGPT是由OpenAI的研究团队基于GPT技术(GenerativePre-trainedTransformer)开发的AI对话引擎。ChatGPT发展历史如下:2015年,GPT技术由OpenAI的研究团队首次提出。该技术使用了一种无需人类标注的方式,使神经网络学习到了大量自然语言处理任务的知识。2018年,OpenAI团队开发了第一个GPT模型,并在自然语言处理领域取得了显著的成果。该
- 反向传播算法:深度神经网络学习的核心机制
2402_85758936
算法dnn学习
引言深度神经网络(DNNs)之所以在众多领域取得革命性的成功,很大程度上归功于其强大的学习能力,而这一能力的核心是反向传播算法(Backpropagation)。这是一种高效的监督学习算法,用于训练多层前馈神经网络。本文将深入探讨反向传播算法的工作原理及其在DNN中的应用。反向传播算法的基本概念反向传播算法结合了梯度下降优化和链式法则,通过计算损失函数关于网络参数的梯度来更新网络权重。1.损失函数
- ReLU和ReLU6
chen_znn
激活函数pytorch深度学习人工智能计算机视觉
ReLU和ReLU6都是深度学习中常用的激活函数,它们各自有不同的优缺点。ReLU(RectifiedLinearUnit)优点非线性:ReLU是一个非线性函数,能够帮助神经网络学习复杂的模式和特征计算简单:ReLU函数的计算速度快,只需要判断输入是否大于零,因此在实践中被广泛采用解决梯度消失问题:相比于一些传统的激活函数,ReLU对梯度消失问题有一定的缓解作用缺点神经元死亡问题:当输入值为负时,
- 神经网络和深度学习
灰斗儿
原著作者:michael_nielsen前往神经网络和深度学习神经网络和深度学习是一本免费的在线图书,这本书将教给你:神经网络,是一个由于生物启发的编程规范,使计算机通过观察数据进行学习深度学习,一种强大的神经网络学习技术神经网络和深度学习目前为图像识别、语音识别和自然语言处理中的许多问题提供了最好的解决方案。这本书将教你许多神经网络和深度学习背后的核心概念。有关这本书所采取的方法的更多的细节,看
- 神经网络简述
城市中迷途小书童
一、什么是神经网络机器学习中谈论的神经网络是指“神经网络学习”,或者说,是机器学习和神经网络这两个学科领域的交叉部分[1]。在这里,神经网络更多的是指计算机科学家模拟人类大脑结构和智能行为,发明的一类算法的统称。神经网络是众多优秀仿生算法中的一种,读书时曾接触过蚁群优化算法,曾惊讶于其强大之处,但神经网络的强大,显然蚁群优化还不能望其项背。二、简要历史A、起源与第一次高潮。有人认为,神经网络的最早
- 【机器学习 & 深度学习】开发工具Anaconda的安装与使用
为梦而生~
机器学习python实战机器学习深度学习pythoncondapycharm人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习:相对完整的机器学习基础教学!机器学习python实战:用python带你感受真实的机器学习深度学习:现代人工智能的主流技术介绍往期推荐:【机器学习&深度学习】神经网络简述【机器学习&深度学习】卷积神经网络学习笔记【Python基础&机器学习】Python环境搭建(适合新手阅读的超详细教程)文章目录前言安装Anaconda关于Anaconda的介
- 神经网络学习小记录36——Keras实现LSTM与LSTM参数量详解
Bubbliiiing
神经网络学习小记录KerasLSTM神经网络深度学习
神经网络学习小记录36——Keras实现LSTM学习前言什么是LSTM1、LSTM的结构2、LSTM独特的门结构3、LSTM参数量计算a、遗忘门b、输入门c、输出门d、全部参数量在Keras中实现LSTM实现代码学习前言我死了我死了我死了!什么是LSTM1、LSTM的结构我们可以看出,在n时刻,LSTM的输入有三个:当前时刻网络的输入值Xt;上一时刻LSTM的输出值ht-1;上一时刻的单元状态Ct
- python 神经网络学习
追寻内心的梦想
最新在朋友的推荐下看了《python神经网络编程》,深有启发,本文以深入浅出的道理,简单明了的介绍了一种神经网络的原理及python实现过程及全部代码,通过学习,至少基本掌握了相关知识,为后面学习打下基础,有几点心得分享如下:1、大学阶段学好数学很重要在《python神经网络编程》一书中,里面核心的算法思维方式就是线性代数和微积分,尤其是线性代数矩阵的乘法,是神经网络计算的核心内容,幸好大学时这块
- 人工智能福利站,初识人工智能,图神经网络学习,第三课
普修罗双战士
人工智能专栏人工智能神经网络学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一图神经网络专栏人工智能专业知识学习二图神经网络专栏人工智能专业知识学习三图神经网络专栏文章目录初识人工智能(图神经网络)一、图神经网络学习(3)21.请解释图神经网络中的前向传播过程。22.请解释
- 人工智能福利站,初识人工智能,图神经网络学习,第二课
普修罗双战士
人工智能专栏人工智能神经网络学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一图神经网络专栏人工智能专业知识学习二图神经网络专栏文章目录初识人工智能(图神经网络)一、图神经网络学习(2)11.请介绍常见的图神经网络模型,如GraphConvolutionalNetworks
- 人工智能福利站,初识人工智能,图神经网络学习,第一课
普修罗双战士
人工智能专栏人工智能神经网络学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一图神经网络专栏文章目录初识人工智能(图神经网络)一、图神经网络学习(1)01.什么是图神经网络(GNN)?02.图神经网络与传统神经网络的区别是什么?03.图神经网络有哪些主要的应用领域?04.请
- Python GCN、GAT、MP等图神经网络学习,从入门全面概述和讲解GNN,入门到精通图神经网络
医学小达人
推荐算法人工智能图神经网络图神经网络人工智能推荐系统
1.图的分类:1.1根据边的方向性:有向图(DirectedGraph):图中的边具有方向性,表示节点之间的单向关系。例如,A指向B的边表示节点A指向节点B。无向图(UndirectedGraph):图中的边没有方向性,表示节点之间的双向关系。例如,A和B之间的边表示节点A和节点B之间存在连接关系。1.2根据边的是否具有权重:加权图(WeightedGraph):图中的边具有权重,表示节点之间的强
- 吴恩达coursera机器学习个人向笔记——9章神经网络学习
选西瓜专业户
吴恩达机器学习吴恩达机器学习
文章目录课时62非线性假设09:36课时63神经元与大脑07:47课时64模型展示Ⅰ12:01课时65模型展示Ⅱ11:46课时68例子与直觉理解Ⅰ07:15课时70例子与直觉理解Ⅱ10:20课时71多元分类03:51课时62非线性假设09:36对图1那样的作分类,逻辑斯蒂回归中,只要g(θ转X)中的(高次)项足够多,就一定能找出边界但这是2个特征的情况如果有100个特征,二次交叉项会将近5000个
- 【深度学习】基于PyTorch架构神经网络学习总结(基础概念&基本网络搭建)
hi_ly_51
深度学习pytorch神经网络
nn.Module的使用利用PyTorch架构使用神经网络模型时,一般是利用torch.nn函数自定义神经网络框架|官方示例:importtorch.nnasnnimporttorch.nn.functionalasFclassModel(nn.Module):def__init__(self):super().__init__()self.conv1=nn.Conv2d(1,20,5)self.
- 使用colab、featurize进行深度学习
TowerCrane2C
深度学习人工智能
神经网络学习小记录69——Pytorch使用GoogleColab进行深度学习_googlecolabpytorch_Bubbliiiing的博客-CSDN博客PyTorch快速查看pth文件保存的参数_pytorch怎么看pth参数类型_Kkkkaii的博客-CSDN博客(新手向)从零开始使用Colab进行机器/深度学习详细教程_liyihao76的博客-CSDN博客zz使用colab的一个步骤
- 【深度学习】神经网络可视化工具,超全汇总!
风度78
深度学习神经网络人工智能机器学习
神经网络可视化是指通过图形化的方式展示神经网络的结构、参数、输入、输出、中间结果等信息,可以帮助用户更好地神经网络的内部工作原理和特征提取过程,以优化神经网络模型。扩展阅读:神经网络学习到的是什么?机器学习可视化技术概览(Python)本文汇总了全网最为全面的26款神经网络可视化工具,可以帮助大家了解神经网络的结构组成、工作原理和性能表现,从而更好地进行模型调整和优化。也可以画出酷炫的模型图方便模
- [笔记]深度学习入门 基于Python的理论与实现(六)
飞鸟malred
ai笔记深度学习python
6.与学习相关的技巧6.1参数的更新神经网络学习的目的是找到使损失函数尽可能小的参数,这个过程叫最优化_(optimization_),但是由于神经网络的参数空间复杂,所以很难求最优解.前几章,我们使用参数的梯度,沿梯度的反向更新参数,重复多次,从而逐渐靠近最优参数,这个过程称为随机梯度下降_(stochasticgradientdescent_),简称SGD6.1.1探险家的故事6.1.2SGD
- 神经网络学习
积雨辋川
机器学习神经网络机器学习
神经网络一、神经网络概述人工神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:(1)生物原型研究从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结
- 吴恩达卷积神经网络学习笔记(六)|CSDN创作打卡
墨倾许
深度学习神经网络计算机视觉
3.2特征点检测神经网络可以通过输出图片上特征点的(x,y)坐标,来实现对目标特征的识别。我们来看几个例子,假设你正在构建一个人脸识别应用,出于某种原因,你希望算法可以给出眼角的具体位置,眼角坐标为(x,y),你可以让神经网络的最后一层,多出两个数字lx和ly,作为眼角的坐标值.如果你想知道两只眼睛的4个眼角的具体位置,那么从左到右依次用4个特征点来表示这4个眼角,对神经网络稍微做些修改,输出第1
- 吴恩达卷积神经网络学习笔记(二)
墨倾许
cnn深度学习机器学习
一.卷积神经网络(一)1.6三维卷积3指的是颜色通道(RGB)6*6*3分别对应宽*高*通道的数目滤波器也有相对应的3*3*3,由此得到一个4*4的输出。对三维图像进行卷积时,卷积核的通道数要与三维图像的通道数相等。当我们想对图像的多个边缘特征进行检测时,我们可以使用多个卷积核,这样卷积后生成图像的通道数为使用的卷积核的个数。对于三维卷积具体运算的实例如下:如果使用的是下图3*3*3的卷积核,则一
- 【深度学习】初识深度学习
wmh1024
深度学习人工智能
初识深度学习什么是深度学习关系:人工智能机器学习深度学习卷积神经网络深度学习和机器学习的关系:机器学习:随着数据量增加会改进性能的算法深度学习:使用多层神经网络学习。深度学习是机器学习的子集。传统系统和深度学习的区别:传统编程系统:定义规则,输入数据获取输出(定义f(x)、x求得y)深度学习系统:输入答案和数据,输出规则(定义x、y求得f(x),且f(x)具有泛化性)规则f(x)规则f(x)数据x
- CNN神经网络学习
闻林禹
神经网络cnn学习
作为一名算力芯片工程师,平时跟芯片设计打交道比较多。同时希望能对软件/神经网络应用层面有更多的了解,以加强对芯片内部设计需求的理解。此贴记录了自己对神经网络的学习过程。1.前期准备参考:MacM1安装Miniconda+支持GPU的TensorFlow和PyTorch_minicondamac-CSDN博客神经网络的搭建可以用pytorch,TensorFlow等,推荐在miniconda安装神经
- 【神经网络算子】
dataloading
神经网络人工智能深度学习
神经网络算子(1)——DeepONet介绍AI与PDE(三):大概是最好懂的DeepONet模型解析算子把函数映射为函数。输入函数u,在固定的sensors上:x_1,x_2,…,x_m。即u(x_i)和y。输出函数G(u),在随机的y上。即G(u)(y)。目的是,让神经网络学习算子G,从u(y)可以得到G(u)(y)。
- AAAI 2023 | 图神经网络学习同构计数
PaperWeekly
神经网络学习深度学习机器学习人工智能
©PaperWeekly原创·作者|于星橦单位|中国科学技术大学博士生研究方向|图神经网络论文题目:LearningtoCountIsomorphismswithGraphNeuralNetworks论文链接:https://arxiv.org/pdf/2302.03266.pdf代码链接:https://github.com/Starlien95/Count-GNN论文录用:AAAI2023Ma
- 08-20201012 感知机2 感知机的权重调整过程叫不叫反向传播?
野山羊骑士
神经网络的学习主要蕴含在权重和阈值中,多层网络使用上面简单感知机的权重调整规则显然不够用了,BP神经网络算法即误差逆传播算法(errorBackPropagation)正是为学习多层前馈神经网络而设计,BP神经网络算法是迄今为止最成功的的神经网络学习算法。上图的网络中有(d+l+1)*q+l个参数需要确定:输入层到隐层的d×q个权重,隐层到输出层q×l个权重、q个隐层神经元的阈值、l个输出神经元的
- 模型预测控制MPC
oceancoco
pythonpytorch人工智能
第16章模型预测控制16.1简介之前几章介绍了基于值函数的方法DQN、基于策略的方法REINFORCE以及两者结合的方法Actor-Critic。他们都是无模型的方法,即没有建立一个环境模型来帮助智能体决策。而在深度强化学习领域,基于模型的方法通常用神经网络学习一个环境模型,然后利用该环境模型来帮助智能体训练和决策。利用环境模型帮助智能体训练和决策的方法有很多种,例如可以利用与之前的Dyna类似的
- C2-3.3.2 机器学习/深度学习——数据增强
帅翰GG
机器学习机器学习深度学习人工智能
C2-3.3.2数据增强参考链接1、为什么要使用数据增强?※总结最经典的一句话:希望模型学习的更稳健当数据量不足时候:人工智能三要素之一为数据,但获取大量数据成本高,但数据又是提高模型精度和泛化效果的重要因素。当数据量不足时,模型很容易过拟合,精度也无法继续提升,因此数据增强技术应运而生通过执行数据增强,你可以阻止神经网络学习不相关的特征,从根本上提升整体性能。——见后面4、应用场景举例2、什么是
- [2014]Intriguing properties of neural networks
蹦卡拉卡yiyo
人工智能深度学习
仅用作笔记学习使用,侵权联系立删!两种特性:1、个别高层次单元和高层次单元的随机线性组合没有太大的差异【这表明,在神经网络的高层中包含语义信息的是空间,而不是个体单元。】2、深度神经网络学习的输入-输出映射在很大程度上不连续的【稍微添加一点扰动,模型就会得到图像的错误分类,特别注意的是,这种扰动跟数据集无关,对不同是数据集添加同样的扰动,不同的模型都会得到错误的分类,也就是说这种扰动是针对神经网络
- 如何选择神经网络的超参数?
Imagination官方博客
网络神经网络大数据python机器学习
1.神经网络的超参数分类神经网路中的超参数主要包括:学习率η,正则化参数λ,神经网络的层数L,每一个隐层中神经元的个数j,学习的回合数Epoch,小批量数据minibatch的大小,输出神经元的编码方式,代价函数的选择,权重初始化的方法,神经元激活函数的种类,参加训练模型数据的规模这些都是可以影响神经网络学习速度和最后分类结果,其中神经网络的学习速度主要根据训练集上代价函数下降的快慢有关,而最后的
- 梯度消失与梯度爆炸的问题小结
笔写落去
深度学习深度学习机器学习笔记
本文参考李沐老师动手深度学习,上篇激活函数有遇到这个问题我们来深入探讨一下文章目录前言一、梯度爆炸二、梯度爆炸的问题三、梯度消失四.梯度消失的问题总结前言到目前为止,我们实现的每个模型都是根据某个预先指定的分布来初始化模型的参数。有人会认为初始化方案是理所当然的,忽略了如何做出这些选择的细节。甚至有人可能会觉得,初始化方案的选择并不是特别重要。相反,初始化方案的选择在神经网络学习中起着举足轻重的作
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在