- 论文阅读笔记(十九):YOLO9000: Better, Faster, Stronger
__Sunshine__
笔记YOLO9000detectionclassification
WeintroduceYOLO9000,astate-of-the-art,real-timeobjectdetectionsystemthatcandetectover9000objectcategories.FirstweproposevariousimprovementstotheYOLOdetectionmethod,bothnovelanddrawnfrompriorwork.Theim
- 论文阅读笔记: DINOv2: Learning Robust Visual Features without Supervision
小夏refresh
论文计算机视觉深度学习论文阅读笔记深度学习计算机视觉人工智能
DINOv2:LearningRobustVisualFeatureswithoutSupervision论文地址:https://arxiv.org/abs/2304.07193代码地址:https://github.com/facebookresearch/dinov2摘要大量数据上的预训练模型在NLP方面取得突破,为计算机视觉中的类似基础模型开辟了道路。这些模型可以通过生成通用视觉特征(即无
- SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning论文阅读笔记
慘綠青年627
论文阅读笔记深度学习
SAFEFL:MPC-friendlyFrameworkforPrivateandRobustFederatedLearning适用于私有和鲁棒联邦学习的MPC友好框架SAFEFL,这是一个利用安全多方计算(MPC)来评估联邦学习(FL)技术在防止隐私推断和中毒攻击方面的有效性和性能的框架。概述传统机器学习(ML):集中收集数据->隐私保护问题privacy-preservingML(PPML)采
- A Tutorial on Near-Field XL-MIMO Communications Towards 6G【论文阅读笔记】
Cc小跟班
【论文阅读】相关论文阅读笔记
此系列是本人阅读论文过程中的简单笔记,比较随意且具有严重的偏向性(偏向自己研究方向和感兴趣的),随缘分享,共同进步~论文主要内容:建立XL-MIMO模型,考虑NUSW信道和非平稳性;基于近场信道模型,分析性能(SNRscalinglaws,波束聚焦、速率、DoF)XL-MIMO设计问题:信道估计、波束码本、波束训练、DAMXL-MIMO信道特性变化:UPW➡NUSW空间平稳–>空间非平稳(可视区域
- 时序预测相关论文阅读笔记
能力越小责任越小YA
论文阅读笔记时序预测Transformer
笔记链接:【有道云笔记】读论文(记录)https://note.youdao.com/s/52ugLbot用于个人学习记录。
- Your Diffusion Model is Secretly a Zero-Shot Classifier论文阅读笔记
Rising_Flashlight
论文阅读笔记计算机视觉
YourDiffusionModelisSecretlyaZero-ShotClassifier论文阅读笔记这篇文章我感觉在智源大会上听到无数个大佬讨论,包括OpenAISora团队负责人,谢赛宁,好像还有杨植麟。虽然这个文章好像似乎被引量不是特别高,但是和AI甚至人类理解很本质的问题很相关,即是不是要通过生成来构建理解的问题,文章的做法也很巧妙,感觉是一些学者灵机一动的产物,好好学习一个!摘要这
- Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport论文阅读笔记
猪猪想上树
论文阅读笔记
ConditionalFlowMatching:Simulation-FreeDynamicOptimalTransport笔记发现问题连续正规化流(CNF)是一种有吸引力的生成式建模技术,但在基于模拟的最大似然训练中受到了限制。解决问题介绍一种新的条件流匹配(CFM),一种针对CNFs的免模拟训练目标。具有稳定的回归目标,用于扩散模型中的随机流,但享有确定性流模型的有效推断。与扩散模型和CNF目
- 论文阅读笔记《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
深视
论文阅读笔记#小样本学习深度学习小样本学习
小样本学习&元学习经典论文整理||持续更新核心思想 本文提出一种基于最近邻方法的小样本学习算法(SimpleShot),作者指出目前大量的小样本学习算法都采用了元学习的方案,而作者却发现使用简单的特征提取器+最近邻分类器的方法就能实现非常优异的小样本分类效果。本文首先用特征提取网络fθf_{\theta}fθ+线性分类器在一个基础数据集上对网络进行训练,将训练得到的特征提取网络增加一个简单的特征
- 【论文阅读笔记】(2015 ICML)Unsupervised Learning of Video Representations using LSTMs
小吴同学真棒
学习人工智能LSTM动作识别无监督自监督self-supervised
UnsupervisedLearningofVideoRepresentationsusingLSTMs(2015ICML)NitishSrivastava,ElmanMansimov,RuslanSalakhutdinovNotesContributionsOurmodelusesanencoderLSTMtomapaninputsequenceintoafixedlengthrepresent
- 使用动态网格的流体动画 Fluid Animation with Dynamic Meshes 论文阅读笔记
hijackedbycsdn
FluidSimulation笔记
目录引言背景方法离散化离散化的导数算子速度插值广义的半拉格朗日步重新网格化双向流固耦合和质量守恒原文:Klingner,BryanM.,etal.“Fluidanimationwithdynamicmeshes.”ACMSIGGRAPH2006Papers.2006.820-825.引言使用[Alliezetal.,2005]的方法动态生成不规则的四面体网格根据边界的位置、边界的形状、基于流体和速
- 【论文阅读笔记】AutoAugment:Learning Augmentation Strategies from Data
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
AutoAugment:LearningAugmentationStrategiesfromData摘要研究方法:本文描述了一种名为AutoAugment的简单程序,通过这个程序可以自动寻找改进的数据增强策略。研究设计了一个策略空间,其中策略包含多个子策略,在每个小批量数据中针对每张图片随机选择一个子策略。每个子策略由两个操作组成,每个操作是图像处理函数(如平移、旋转或剪切),以及应用这些函数的概
- 【论文阅读笔记】Contrastive Learning with Stronger Augmentations
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
ContrastiveLearningwithStrongerAugmentations摘要基于提供的摘要,该论文的核心焦点是在对比学习领域提出的一个新框架——利用强数据增强的对比学习(ContrastiveLearningwithStrongerAugmentations,简称CLSA)。以下是对摘要的解析:问题陈述:表征学习(representationlearning)已在对比学习方法的推动
- 使用八叉树模拟水和烟雾 Simulating Water and Smoke with an Octree Data Structure 论文阅读笔记
hijackedbycsdn
FluidSimulation笔记
原文:Losasso,Frank,FrédéricGibou,andRonFedkiw.“Simulatingwaterandsmokewithanoctreedatastructure.”Acmsiggraph2004papers.2004.457-462.引言这篇文章扩展了[Popinet2003]的工作,拓展到表面自由流,并且使得八叉树不受限制自适应网格划分的一个缺点是,它的模板不是均匀的,
- PointMixer论文阅读笔记
ZHANG8023ZHEN
论文阅读笔记
MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以很好的处理点云问题。PointMixer可以很好的处理intra-set,inter-set,hierarchical-set的点云。
- DCNNs之DNA论文阅读笔记
苏十一0421
Article:DeepConvolutionalNeuralNetworkArchitectureWithReconfigurableComputationPatternsJournalTitle:IEEETransactionsonVeryLargeScaleIntegration(VLSI)SystemsIssue:No.08-Aug.(2017vol.25)ISSN:1063-8210pp
- 【论文阅读笔记】UNSUPERVISED REPRESENTATION LEARNING FOR TIME SERIES WITH TEMPORAL NEIGHBORHOOD CODING
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
UNSUPERVISEDREPRESENTATIONLEARNINGFORTIMESERIESWITHTEMPORALNEIGHBORHOODCODINGABSTRACT 本文提出了一种自监督框架,名为“时间邻域编码”(TemporalNeighborhoodCoding,TNC),用于学习非平稳时间序列的可泛化表示。该方法利用信号生成过程的局部平滑性来定义具有平稳性质的时间邻域。通过使用去偏差对
- Deep Learning Workload Scheduling in GPU Datacenters:Taxonomy, Challenges and Vision 论文阅读
牛码当驴
云计算算法云计算论文阅读
【论文阅读笔记】DeepLearningWorkloadSchedulinginGPUDatacenters:Taxonomy,ChallengesandVision论文链接GPU数据中心的DL工作负载调度:分类、挑战、展望AbstractDeeplearning(DL)showsitsprosperityinawidevarietyoffields.ThedevelopmentofaDLmode
- 论文阅读笔记 RPT: Learning Point Set Representation for Siamese Visual Tracking
faverr
论文阅读笔记RPT:LearningPointSetRepresentationforSiameseVisualTracking综合了可形变卷积、RepPoints检测、多层级卷积特征等思想论文地址代码地址现有跟踪方法中存在的问题现有的跟踪方法往往采用矩形框或四边形来表示目标的状态(位置和大小),这种方式忽略了目标自身会变化的特点(形变、姿态变化),因此作者采用表示点(Representative
- SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage——论文泛读
妙BOOK言
论文阅读论文阅读KV存储lsm-tree
FAST2021Paper论文阅读笔记整理问题键值(KV)存储支持许多关键的应用和服务。它们在内存中执行快速处理,但通常受到I/O性能的限制。最近出现的高速NVMeSSD推动了新KV系统设计,以利用其低延迟和高带宽。挑战当前基于LSM树的KV存储未能充分发挥NVMeSSD的全部潜力。例如,在OptaneP4800X上部署RocksDB,相对于SATASSD,对于50%写入的工作负载,吞吐量仅提高了
- DyTIS: A Dynamic Dataset Targeted Index Structure Simultaneously Efficient for Search, Inse...——论文泛读
妙BOOK言
论文阅读论文阅读KV存储
EuroSys2023Paper论文阅读笔记整理问题在现实生活中,许多数据集都是复杂且动态的,即它们的键密度在整个键空间上变化,它们的键分布随时间变化。对于这样的动态数据集,使得索引结构能够高效支持数据管理中的所有关键操作,特别是搜索、插入和扫描,是一项具有挑战性的任务。挑战对于内存中的数据管理系统,例如内存数据库和键值存储[4,12,34,35,56],索引结构的效率至关重要,强烈影响系统的最终
- Gan论文阅读笔记
Alex·Fall
深度学习生成对抗网络论文阅读笔记
GAN论文阅读笔记2014年老论文了,主要记录一些重要的东西。论文链接如下:GenerativeAdversarialNets(neurips.cc)文章目录GAN论文阅读笔记出发点创新点设计训练代码网络结构代码测试代码出发点Deepgenerativemodelshavehadlessofanimpact,duetothedifficultyofapproximatingmanyintracta
- PairLIE论文阅读笔记
Alex·Fall
低光增强论文阅读笔记
PairLIE论文阅读笔记论文为2023CVPR的LearningaSimpleLow-lightImageEnhancerfromPairedLow-lightInstances.论文链接如下:openaccess.thecvf.com/content/CVPR2023/papers/Fu_Learning_a_Simple_Low-Light_Image_Enhancer_From_Paire
- 点云transformer算法: FlatFormer 论文阅读笔记
zhaoyqcsdn
深度学习transformer算法论文阅读
代码:https://github.com/mit-han-lab/flatformer论文:https://arxiv.org/abs/2301.08739[FlatFormer.pdf]Flatformer是对点云检测中的backbone3d部分的改进工作,主要在探究怎么高效的对点云应用transformer具体的工作如下:一个缩写:**PCTs即pointcloudtransformers*
- 【论文阅读笔记】InstantID : Zero-shot Identity-Preserving Generation in Seconds
LuH1124
论文阅读笔记图像编辑文生图论文阅读文生图扩散模型人脸识别
InstantID:秒级零样本身份保持生成理解摘要Introduction贡献RelatedWorkText-to-imageDiffusionModelsSubject-drivenImageGenerationIDPreservingImageGenerationMethod实验定性实验消融实验与先前方法的对比富有创意的更多任务新视角合成身份插值多身份区域控制合成结论和未来工作project:
- 【论文阅读笔记】Taming Transformers for High-Resolution Image Synthesis
LuH1124
论文阅读笔记论文阅读transformercnn图像生成
TamingTransformersforHigh-ResolutionImageSynthesis记录前置知识AbstractIntroductionRelatedWorkMethodLearninganEffectiveCodebookofImageConstituentsforUseinTransformersLearningtheCompositionofImageswithTransfo
- 【论文阅读笔记】Make-A-Character: High Quality Text-to-3D Character Generation within Minutes
LuH1124
论文阅读笔记数字人Relight论文阅读3d数字人计算机图形学头发生成
【论文阅读笔记】分钟级别的高质量文本到3D角色生成AbstractIntroductionMethodLL/VM解析人脸面部属性并生成根据密集地标重建face/head形状几何生成纹理生成纹理提取漫反射反照率(DiffusionAlbedo)估计纹理矫正和补全头发生成(牛了)资产匹配实验未来工作paperhttps://arxiv.org/abs/2312.15430Demohttps://hug
- 【论文阅读笔记】Würstchen: AN EFFICIENT ARCHITECTURE FOR LARGE-SCALETEXT-TO-IMAGE DIFFUSION MODELS
LuH1124
论文阅读笔记文生图论文阅读text2img扩散模型
WURSTCHEN:用于大规模文本到图像扩散模型的高效架构摘要贡献方法训练推理实验结论附录附录A附录B附录C附录D附录E这篇文章提出了一个高效的用于文本到图像生成模型架构,整体思路比较直白,在不损失图像生成质量的情况下,相比于现有T2I模型(SD1.4,SD2.1等)大大节约了成本。附录部分给了一些有趣的东西,比如FID的鲁棒性整篇文章还有点疑惑,比如阶段B的训练,使用的模型;节省成本主要是在说C
- 【论文阅读笔记】Advances in 3D Generation: A Survey
LuH1124
论文阅读笔记3DGeneration论文阅读3d神经表示渲染
Advancesin3DGeneration:ASurvey挖个坑,近期填完摘要time:2024年1月31日paper:arxiv机构:腾讯挖个坑,近期填完摘要生成3D模型位于计算机图形学的核心,一直是几十年研究的重点。随着高级神经表示和生成模型的出现,3D内容生成领域发展迅速,能够创建越来越高质量和多样化的3D模型。该领域的快速增长使得很难跟上所有最近的发展。在本次调查中,我们旨在介绍3D生成
- 【论文阅读笔记】Transformer-XL
没啥信心
Paper:Transformer-XL:AttentiveLanguageModelsBeyondaFixed-LengthContext重点关注论文中的相对位置编码及提高融合了相对位置信息的attentionscore的计算效率的部分。AbstractTransformer具有学习长依赖的能力,但受限于语言模型固定长度上下文的限定。本文提出的Transformer-XL神经网络架构可以在不打破
- 【论文阅读笔记】Time Series Contrastive Learning with Information-Aware Augmentations
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
TimeSeriesContrastiveLearningwithInformation-AwareAugmentations摘要背景:在近年来,已经有许多对比学习方法被提出,并在实证上取得了显著的成功。尽管对比学习在图像和语言领域非常有效和普遍,但在时间序列数据上的应用相对较少。对比学习的关键组成部分:对比学习的一个关键组成部分是选择适当的数据增强(augmentation)方式,通过施加一些先
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l