容器化Kubernetes(k8s)

1、Kubernetes概述

1.1、Kubernetes介绍

1.1.1、Kubernetes是什么及作用

Kubernetes(K8S)是Google在2014年发布的一个开源项目,用于自动化容器化应用程序的部署、扩展和管理。Kubernetes通常结合docker容器工作,并且整合多个运行着docker容器的主机集群。 官网地址:https://Kubernetes.io
中文社区 https://www.kubernetes.org.cn/docs
Kubernetes的目标是让部署容器化的应用简单并且高效,Kubernetes一个核心特点就是能够自主的管理容器来保证云平台中的容器按照用户的期望运行。以下是Kubernetes相关特性:

  • 自动包装
    根据资源需求和其他约束自动放置容器,同时不会牺牲可用性,混合关键和最大努力的工作负载,以提高资源利用率并节省更多资源。
  • 横向缩放
    使用简单的命令或 UI,或者根据 CPU 的使用情况自动调整应用程序副本数。
  • 自动部署和回滚
    Kubernetes 逐渐部署对应用程序或其配置的更改,同时监视应用程序运行状况,以确保它不会同时终止所有实例。 如果出现问题,Kubernetes会为您恢复更改,利用日益增长的部署解决方案的生态系统。
  • 存储编排
    自动安装您所选择的存储系统,无论是本地存储,如公有云提供商 GCP 或 AWS, 还是网络存储系统 NFS,iSCSI, Gluster, Ceph, Cinder, 或 Flocker。
  • 自我修复
    重新启动失败的容器,在节点不可用时,替换和重新编排节点上的容器,终止不对用户定义的健康检查做出响应的容器,并且不会在客户端准备投放之前将其通告给客户端。
  • 服务发现和负载均衡
    不需要修改您的应用程序来使用不熟悉的服务发现机制,Kubernetes 为容器提供了自己的 IP 地址和一组容器的单个 DNS 名称,并可以在它们之间进行负载均衡。
  • 密钥和配置管理
    部署和更新密钥和应用程序配置,不会重新编译您的镜像,不会在堆栈配置中暴露密钥(secrets)。
  • 批处理
    除了服务之外,Kubernetes还可以管理您的批处理和 CI 工作负载,如果需要,替换出现故障的容器。

使用Kubernetes能做什么
Kubernetes是一个全新的基于容器技术的分布式架构领先方案(源于Brog,是google十几年经验的结晶);
Kubernetes是一个开放的开发平台(无侵入性,现有系统很容器迁移到Kubernetes上);
Kubernetes是一个完备的分布式系统支撑平台(完善的集群管理能力)。
使用Kubernetes可以在物理或虚拟机的Kubernetes集群上运行容器化应用,Kubernetes能够提供一个以容器为中心的基础架构,满足在生产环境中运行应用的一些常见需求,如:

  • 多个进程协同工作
  • 存储系统挂载
  • Distributing secrets
  • 应用健康检测
  • 应用实例的复制
  • Pod自动伸缩/扩展
  • Naming and discovering
  • 负载均衡
  • 滚动更新
  • 资源监控
  • 日志访问
  • 调度应用程序
  • 提供认证和授权

为什么使用Kubernetes

使用Kubernetes最直接的感受就是我们可以轻装上阵的开发复杂的系统了;其次Kubernetes是在全面拥抱微服务架构(微服务的核心就是将一个巨大的单体应用拆分成很多小的互相连接的微服务,一个微服务后面可能是多个实例副本在支撑,副本数量可以随着系统负荷的变化而动态调整);最后Kubernetes系统架构具备超强的横向扩展能力。

1.1.2、Kubernetes快速入门

  • 环境准备
    • 关闭CentOS防火墙
      systemctl disable firewalld
      systemctl stop firewalld
    • 安装etcd和kubernetes软件(docker也顺便安装上了)
      yum install -y etcd kubernetes
    • 启动服务
      systemctl start etcd
      systemctl start docker
      查看etcd与docker启动状态:
# 查看etcd状态
systemctl status etcd
# 查看docker状态
systemctl status docker
如果docker启动失败,请参考:
vi /etc/sysconfig/selinux 
把selinux后面的改为disabled,重启机器,再重启docker就可以了

              systemctl start kube-apiserver
              systemctl start kube-controller-manager
              systemctl start kube-scheduler
              systemctl start kubelet
              systemctl start kube-proxy

  • 配置
    • tomcat配置(在/usr/local下新建k8s目录,然后新建下边的文件)
      • 新建mytomcat-rc.yaml
apiVersion: v1
kind: ReplicationController
metadata:
 name: mytomcat
spec:
 replicas: 2
 selector:
  app: mytomcat
 template:
  metadata:
   labels:
    app: mytomcat
  spec:
   containers:
    - name: mytomcat
      image: tomcat:7-jre7
      ports:
      - containerPort: 8080

执行命令:kubectl create -f mytomcat-rc.yaml
(查看:kubectl get pods,如果该命令报错(No resources found),后边有解决办法)
容器化Kubernetes(k8s)_第1张图片
发现有两个tomcat,是因为在配置文件里配置了"2":
容器化Kubernetes(k8s)_第2张图片

  • 新建mytomcat-svc.yaml
apiVersion: v1
kind: Service
metadata:
 name: mytomcat
spec:
 type: NodePort
 ports:
  - port: 8080
    nodePort: 30001
 selector:
  app: mytomcat

执行命令:kubectl create -f mytomcat-svc.yaml
(查看svc:kubectl get svc)

  • 常见问题解决
    • docker pull失败

      • 解决方案1

        1. yum install rhsm -y
        2. docker pull registry.access.redhat.com/rhel7/pod-infrastructure:latest
          如果以上两步解决问题了,那么就不需要在执行下面操作
        3. docker search pod-infrastructure
        4. docker pull docker.io/tianyebj/pod-infrastructure
        5. docker tag tianyebj/pod-infrastructure 192.168.126.143:5000/pod-infrastructure
        6. docker push 192.168.126.143:5000/pod-infrastructure
        7. vi /etc/kubernetes/kubelet
          修改 KUBELET_POD_INFRA_CONTAINER="--
          pod-infra-container-image=192.168.237.132:5000/pod- infrastructure:latest"
        8. 重启服务
          systemctl restart kube-apiserver systemctl restart kube-controller-manager systemctl restart
          kube-scheduler systemctl restart kubelet systemctl restart kube-proxy
      • 解决方案2

        1. docker pull kubernetes/pause

        2. docker tag docker.io/kubernetes/pause:latest
          192.168.237.132:5000/google_containers/pause-amd64.3.0

        3. docker push 192.168.126.143:5000/google_containers/pause-amd64.3.0

        4. vi /etc/kubernetes/kubelet配置为
          KUBELET_ARGS="--
          pod_infra_container_image=192.168.237.132:5000/google_containers/pause-amd64.3.0"

        5. 重启kubelet服务 systemctl restart kubelet

    • 外部网不能访问
      在搭建好的k8s集群内创建的容器,只能在其所在的节点上curl可访问,但是在其他任何主机上无法访问容器占用的端口
      解决方案:

      1. vim /etc/sysctl.conf
      2. net.ipv4.ip_forward=1
    • 解决 kubectl get pods时No resources found问题

    1. vim /etc/kubernetes/apiserver
    2. 找到”KUBE_ADMISSION_CONTROL="-
      admission_control=NamespaceLifecycle,NamespaceExists,LimitRanger,SecurityContextDeny,ServiceAccount,ResourceQuota",去掉ServiceAccount,保存退出。
    3. systemctl restart kube-apiserver
      重启此服务

执行:kubectl get pods命令, 状态是Running即可,如果状态为ContainerCreating就说明有问题,关机重启所有服务
容器化Kubernetes(k8s)_第3张图片

  • 浏览测试(如果浏览不可以的话,关机,重启上边涉及到的所有服务即可)
http://192.168.237.132:30001/

容器化Kubernetes(k8s)_第4张图片

1.2、Kubernetes 基本架构与常用术语

Kubernetes集群包含有节点代理kubelet和Master组件(APIs, scheduler, etc),一切都基于分布式的存储系统。下面这张图是Kubernetes的架构图
容器化Kubernetes(k8s)_第5张图片
在这张系统架构图中,我们把服务分为运行在工作节点上的服务和组成集群级别控制板的服务。
Kubernetes节点有运行应用容器必备的服务,而这些都是受Master的控制。
每次个节点上当然都要运行Docker。Docker来负责所有具体的映像下载和容器运行。

  • Kubernetes主要由以下几个核心组件组成:
  • etcd保存了整个集群的状态;
  • apiserver提供了资源操作的唯一入口,并提供认证、授权、访问控制、API注册和发现等机制;
  • controller manager负责维护集群的状态,比如故障检测、自动扩展、滚动更新等;
  • scheduler负责资源的调度,按照预定的调度策略将Pod调度到相应的机器上;
  • kubelet负责维护容器的生命周期,同时也负责Volume(CVI)和网络(CNI)的管理;
  • Container runtime负责镜像管理以及Pod和容器的真正运行(CRI);
  • kube-proxy负责为Service提供cluster内部的服务发现和负载均衡;

除了核心组件,还有一些推荐的Add-ons:

  • kube-dns负责为整个集群提供DNS服务
  • Ingress Controller为服务提供外网入口
  • Heapster提供资源监控
  • Dashboard提供GUI
  • Federation提供跨可用区的集群
  • Fluentd-elasticsearch提供集群日志采集、存储与查询

Kubernetes设计理念和功能其实就是一个类似Linux的分层架构

  • 核心层:Kubernetes最核心的功能,对外提供API构建高层的应用,对内提供插件式应用执行环境
  • 应用层:部署(无状态应用、有状态应用、批处理任务、集群应用等)和路由(服务发现、DNS解析等)
  • 管理层:系统度量(如基础设施、容器和网络的度量),自动化(如自动扩展、动态Provision等)以及策略
    管理(RBAC、Quota、PSP、NetworkPolicy等)
  • 接口层:kubectl命令行工具、客户端SDK以及集群联邦
  • 生态系统:在接口层之上的庞大容器集群管理调度的生态系统,可以划分为两个范畴
    • Kubernetes外部:日志、监控、配置管理、CI、CD、Workflow、FaaS、OTS应用、ChatOps等
    • Kubernetes内部:CRI、CNI、CVI、镜像仓库、Cloud Provider、集群自身的配置和管理等

1.2.1 Cluster

Cluster是计算、存储和网络资源的集合,Kubernetes利用这些资源运行各种基于容器的应用.
Kubernetes Cluster由Master和Node组成,节点上运行着若干Kubernetes服务

1.2.2 Master

Master主要职责是调度,即决定将应用放在哪运行。Master运行Linux系统,可以是物理机或虚拟机。 Master是
Kubernetes Cluster的大脑,运行着的Daemon服务包括kube-apiserver、kube-scheduler、kuber-controllermanager、etcd和Pod网络

  • API Serer(kube-apiserver)
    API Server 提供HTTP/HTTPS RESTful API,即Kubernetes API.是Kubernetes里所有资源的CRUD等操作的唯
    一入口,也是集群控制的入口进程
  • Scheduler(kube-scheduler)
    Scheduler负责资源调度的里程,简单说,它决定将Pod放在哪个Node上运行
  • Controller Manager(kube-controller-manager)
    所有资源对象的自动化控制中心。Controller Manager负责管理Cluster各种资源,保证资源处于预期的状态。Controller Manager有多种,如replication controller、endpoints controller、namespacecontroller、serviceaccounts controller等。
    不同的controller管理不同的资源,如replication controller管理Deployment、StatefulSet、DaemonSet的生命周期,namespace controller管理Namespace资源
  • etcd
    etcd负责保存Kubernetes Cluster的配置信息和各种资源的状态信息。当数据发生变化时,etcd会快速地通知Kubernetes相关组件
  • Pod网络
    Pod要能够相互通信,Kubernetes Cluster必须部署Pod网络,flannel是其中一个可选方案

1.2.2 Node

除了Master,Kubernetes集群中的其它机器被称为Node节点。Node职责是运行容器应用,Node由Master管
理,Node负责监控并汇报容器的状态,同时根据Master的要求管理容器的生命周期。Node也运行在Linux系统,
可以是物理机或虚拟机。
每个Node节点上都运行着以下一组关键进程

  • kubelet
    负责Pod对应的容器的创建、启动等任务,同时与Master节点密切协作,实现集群管理的基本功能
  • kube-proxy
    实现Kubernetes Service的通信与负载均衡机制的重要组件
  • Docker Enginer
    Docker引擎,负责本机的容器创建和管理工作

1.2.3 Pod

Pod是Kubernetes的最小单元,也是最重要和最基本的概念。每一个Pod包含一个或多个容器,Pod的容器会作为一个整体被Master调度到一个Node上运行。Kubenetes为每个Pod都分配了唯一的IP地址,称为PodIP,一个Pod里的多个容器共享PodIP地址。在Kubernetes里,一个Pod里的容器与另外主机上的Pod容器能够直接通信。

1.2.4 Service

Kubernetes Service定义了外界访问一组特定Pod的方式,Service有自己的IP和端口,Service为Pod提供了负载均衡。它也是Kubernetes最核心的资源对象之一,每个Service其实就是我们经常提起的微服务架构中的一个"微服务"。

1.2.5 Replication Controller

Replication Controller(简称RC)是Kubernetes系统中的核心概念之一,它其实是定义了一个期望的场景,即声明
某种Pod的副本数量在任意时刻都符合某个预期值,所以RC的定义包括如下几个部分

  • Pod期待的副本数(replicas)
  • 用于筛选目标Pod的Label Selector
  • 当Pod的副本数量小于预期数量时,用于创建新Pod的Pod模板(template)
    以下是总结的RC的一些特性与作用
  • 在大多数情况下,我们通过定义一个RC实现Pod的创建过程及副本数量的自动控制
  • RC里包括完整的Pod定义模板
  • RC通过Label Selector机制实现对Pod副本的自动控制
  • 通过改变RC里的Pod副本数量,可以实现Pod的扩容或缩容功能
  • 通过改变RC里Pod模板中镜像版本,可以实现Pod的滚动升级功能

2.Kubernetes集群

Kubernetes用于协调高度可用的计算机集群,这些计算机群集被连接作为单个单元工作。Kubernetes 在一个集群
上以更有效的方式自动分发和调度容器应用程序。Kubernetes集群由两种类型的资源组成:

  • Master是集群的调度节点
  • Nodes是应用程序实际运行的工作节点

接下来为大家讲解一下如何快速部署一套Kubernetes集群,K8S集群部署有几种方式:kubeadm、minikube和二进制包。前两者属于自动部署,简化部署操作,我们这里强烈推荐初学者使用二进制包部署,因为自动部署屏蔽了很多细节,使得对各个模块感知很少,非常不利用学习。

2.1、 环境准备与规划

新建三台虚拟机(与前边讲的的没有任何关系,重头开始搭建集群),一台是master,其他两台是node

  • 推荐配置2核2G
    Docker version 17.05.0-ce
    角色 IP 组件
    master 192.168.237.133 etcd、kube-apiserver、kube-controller-manager、 kubescheduler、docker
    node01 192.168.237.134 kube-proxy、kubelet、docker
    node02 192.168.237.135 kube-proxy、kubelet、docker
  • 查看默认防火墙状态(关闭后显示not running ,开启后显示 running)
    firewall-cmd --state
  • 关闭防火墙
    systemctl stop firewalld.service
  • 禁止firewall开机启动
    systemctl disable firewalld.service
  • 获取Kubernetes二进制包
    https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.9.md
    选择要下载的版本
    容器化Kubernetes(k8s)_第6张图片
    只下载下边的这个即可:
    (该文件需要下载,为了大家方便,这里已经下载好上传到百度云盘:https://pan.baidu.com/s/1j98CKaJOjQFLeU1HPam10A,如果地址失效,请在评论区留言来获取)
    容器化Kubernetes(k8s)_第7张图片

页面表格中找到Server Binaries中的kubernetes-server-linux-amd64.tar.gz文件,下载到本地。
该压缩包中包括了k8s需要运行的全部服务程序文件

2.2 Master安装

2.2.1 Docker安装

(1)设置yum源

# 建议首先更新yum
yum  update
# 设置yum源
vi /etc/yum.repos.d/docker.repo
[dockerrepo]
name=Docker Repository
baseurl=https://yum.dockerproject.org/repo/main/centos/$releasever/
enabled=1
gpgcheck=1
gpgkey=https://yum.dockerproject.org/gpg

(2)安装docker

yum install docker-engine

(3)安装后查看docker版本

docker -v

2.2.2 etcd服务

etcd做为Kubernetes集群的主要服务,在安装Kubernetes各服务前需要首先安装和启动。

  • 下载etcd二进制文件
    https://github.com/etcd-io/etcd/releases
    在页面最下方找到下载链接(这里下载好了:https://pan.baidu.com/s/1bp4yTIgPh3VTJup8ZxkwZA)
    容器化Kubernetes(k8s)_第8张图片

  • 上传到master
    在user/local下新建k8s目录,将上边下载下来的压缩包上传到这个目录里,并解压;

  • 进入解压后的目录,将etcd和etcdctl文件复制到/usr/bin目录
    容器化Kubernetes(k8s)_第9张图片

# 复制到/usr/bin目录下
cp etcd etcdctl /usr/bin
  • 配置systemd服务文件 /usr/lib/systemd/system/etcd.service (之前没有,是需要自己新建的)
vi  /usr/lib/systemd/system/etcd.service

将下边的内容复制进去;注意,下边有这样的一个配置WorkingDirectory=/var/lib/etcd/,其中/var/lib/etcd/这个路径需要手动去创建,即:mkdir -p /var/lib/etcd/

[Unit]
Description=Etcd Server
After=network.target
[Service]
Type=simple
EnvironmentFile=-/etc/etcd/etcd.conf
WorkingDirectory=/var/lib/etcd/
ExecStart=/usr/bin/etcd
Restart=on-failure
[Install]
WantedBy=multi-user.target
  • 启动与测试etcd服务
systemctl daemon-reload
systemctl enable etcd.service
mkdir -p /var/lib/etcd/
systemctl start etcd.service
# 查看状态
systemctl status etcd
etcdctl cluster-health

在这里插入图片描述

2.2.3、kube-apiserver服务

将kubernetes-server-linux-amd64.tar.gz文件上传到 /usr/local/k8s目录,解压后,进入/server/bin目录,将kube-apiserver、kube-controller-manager、kube-scheduler以及管理要使用的kubectl二进制命令文件放到/usr/bin目录,即完成这几个服务的安装
容器化Kubernetes(k8s)_第10张图片

cp kube-apiserver kube-controller-manager kube-scheduler kubectl /usr/bin/

下面是对kube-apiserver服务进行配置
编辑systemd服务文件 vi /usr/lib/systemd/system/kube-apiserver.service

[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
After=etcd.service
Wants=etcd.service
[Service]
EnvironmentFile=/etc/kubernetes/apiserver
ExecStart=/usr/bin/kube-apiserver $KUBE_API_ARGS
Restart=on-failure
Type=notify
[Install]
WantedBy=multi-user.target

配置文件
创建目录:mkdir /etc/kubernetes
vi /etc/kubernetes/apiserver

KUBE_API_ARGS="--storage-backend=etcd3 --etcd-servers=http://127.0.0.1:2379 --insecure-bind-address=0.0.0.0 --insecure-port=8080 --service-cluster-ip-range=169.169.0.0/16 --service-node-port-range=1-65535 --admission-control=NamespaceLifecycle,NamespaceExists,LimitRanger,SecurityContextDeny,ServiceAccount,DefaultStorageClass,ResourceQuota --logtostderr=true --log-dir=/var/log/kubernetes --v=2"

调整格式,复制后,注意行首与行末尾别缺少内容
在这里插入图片描述

2.2.4、kube-controller-manager服务

kube-controller-manager服务依赖于kube-apiserver服务:
配置systemd服务文件:vi /usr/lib/systemd/system/kube-controller-manager.service

[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=kube-apiserver.service
Requires=kube-apiserver.service
[Service]
EnvironmentFile=-/etc/kubernetes/controller-manager
ExecStart=/usr/bin/kube-controller-manager $KUBE_CONTROLLER_MANAGER_ARGS
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target

配置文件 vi /etc/kubernetes/controller-manager(复制完后一定要检查是不是复制对了,本人复制后发现经常缺少横杠)

KUBE_CONTROLLER_MANAGER_ARGS="--master=http://192.168.237.133:8080 --logtostderr=true --log-dir=/var/log/kubernetes --v=2"

2.2.5 kube-scheduler服务

kube-scheduler服务也依赖于kube-apiserver服务。
配置systemd服务文件:vi /usr/lib/systemd/system/kube-scheduler.service

[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=kube-apiserver.service
Requires=kube-apiserver.service
[Service]
EnvironmentFile=-/etc/kubernetes/scheduler
ExecStart=/usr/bin/kube-scheduler $KUBE_SCHEDULER_ARGS
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target

配置文件:vi /etc/kubernetes/scheduler

KUBE_SCHEDULER_ARGS="--master=http://192.168.237.133:8080 --logtostderr=true --log-dir=/var/log/kubernetes --v=2"

2.2.6 启动

完成以上配置后,按顺序启动服务
systemctl daemon-reload
systemctl enable kube-apiserver.service
systemctl start kube-apiserver.service
systemctl enable kube-controller-manager.service
systemctl start kube-controller-manager.service
systemctl enable kube-scheduler.service
systemctl start kube-scheduler.service
检查每个服务的健康状态:
systemctl status kube-apiserver.service
systemctl status kube-controller-manager.service
systemctl status kube-scheduler.service

2.3 Node1安装

在Node1节点上,以同样的方式把解压kubernetes-server-linux-amd64.tar.gz文件,从压缩包中找到这个路径:k8s/kubernetes/server/bin,将文件kubelet kube-proxy放到/usr/bin目录中。
容器化Kubernetes(k8s)_第11张图片

cp kubelet kube-proxy /usr/bin

在Node1节点上需要预先安装docker,请参考Master上Docker的安装,并启动Docker

# 启动docker
systemctl start docker
# 查看docker状态
systemctl status docker

2.3.1 kubelet服务

配置systemd服务文件:vi /usr/lib/systemd/system/kubelet.service

[Unit]
Description=Kubernetes Kubelet Server
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=docker.service
Requires=docker.service
[Service]
WorkingDirectory=/var/lib/kubelet
EnvironmentFile=-/etc/kubernetes/kubelet
ExecStart=/usr/bin/kubelet $KUBELET_ARGS
Restart=on-failure
KillMode=process
[Install]
WantedBy=multi-user.target

mkdir -p /var/lib/kubelet
配置文件:
mkdir /etc/kubernetes;
vi /etc/kubernetes/kubelet

# ip是本机的ip地址
KUBELET_ARGS="--kubeconfig=/etc/kubernetes/kubeconfig --hostname-override=192.168.237.134 --
logtostderr=false --log-dir=/var/log/kubernetes --v=2 --fail-swap-on=false"

用于kubelet连接Master Apiserver的配置文件
vi /etc/kubernetes/kubeconfig

# ip是master所在的机器ip,不是本机的ip,注意缩进
apiVersion: v1
kind: Config
clusters:
 - cluster:
    server: http://192.168.237.133:8080
   name: local
contexts:
 - context:
    cluster: local
   name: mycontext
current-context: mycontext

2.3.2 kube-proxy服务

kube-proxy服务依赖于network服务,所以一定要保证network服务正常,如果network服务启动失败,常见解决方案有以下几中:

1.和 NetworkManager 服务有冲突,这个好解决,直接关闭 NetworkManger 服务就好了, service
NetworkManager stop,并且禁止开机启动 chkconfig NetworkManager off 。之后重启就好了
2.和配置文件的MAC地址不匹配,这个也好解决,使用ip addr(或ifconfig)查看mac地址,
将/etc/sysconfig/network-scripts/ifcfg-xxx中的HWADDR改为查看到的mac地址
3.设定开机启动一个名为NetworkManager-wait-online服务,命令为:
systemctl enable NetworkManager-wait-online.service
4.查看/etc/sysconfig/network-scripts下,将其余无关的网卡位置文件全删掉,避免不必要的影响,即只留一个以
ifcfg开头的文件

配置systemd服务文件:vi /usr/lib/systemd/system/kube-proxy.service

[Unit]
Description=Kubernetes Kube-proxy Server
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=network.service
Requires=network.service
[Service]
EnvironmentFile=/etc/kubernetes/proxy
ExecStart=/usr/bin/kube-proxy $KUBE_PROXY_ARGS
Restart=on-failure
LimitNOFILE=65536
KillMode=process
[Install]
WantedBy=multi-user.target

配置文件:vi /etc/kubernetes/proxy

# 第一个地址是master 的ip,第二个地址是本机ip
KUBE_PROXY_ARGS="--master=http://192.168.237.133:8080 --hostname-override=192.168.237.134 --
logtostderr=true --log-dir=/var/log/kubernetes --v=2"

2.3.3 启动

systemctl daemon-reload
systemctl enable kubelet
systemctl start kubelet
systemctl status kubelet
systemctl enable kube-proxy
systemctl start kube-proxy
systemctl status kube-proxy

2.4 Node2安装

请参考Node1安装,注意修改IP;也可以克隆node1,步骤如下
关闭虚拟机,点击克隆
容器化Kubernetes(k8s)_第12张图片
容器化Kubernetes(k8s)_第13张图片
容器化Kubernetes(k8s)_第14张图片
容器化Kubernetes(k8s)_第15张图片
容器化Kubernetes(k8s)_第16张图片

容器化Kubernetes(k8s)_第17张图片
修改ip地址

vi /etc/sysconfig/network-scripts/ifcfg-ens33

容器化Kubernetes(k8s)_第18张图片
容器化Kubernetes(k8s)_第19张图片
重新生成mac地址
容器化Kubernetes(k8s)_第20张图片
将生产的mac地址复制到这里
容器化Kubernetes(k8s)_第21张图片
关机重启即可;

2.5 健康检查与示例测试

  • 查看集群状态
# 在master机器上执行该命令
kubectl get nodes
# 如果系统提示上边这个命令没找到,则进入到/usr/local/k8s/kubernetes/server/bin这个目录,执行:
cp kubelet /usr/bin

容器化Kubernetes(k8s)_第22张图片

  • 查看master集群组件状态
kubectl get cs

容器化Kubernetes(k8s)_第23张图片

  • 在master里,进入到/usr/local/k8s目录,创建 nginx-rc.yaml文件,内容如下:
apiVersion: v1
kind: ReplicationController
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
  app: nginx
 template:
  metadata:
   labels:
    app: nginx
  spec:
   containers:
   - name: nginx
     image: nginx
     ports:
     - containerPort: 80

执行命令:kubectl create -f nginx-rc.yaml

  • 在master里,进入到/usr/local/k8s目录,创建nginx-svc.yaml文件,内容如下:
apiVersion: v1
kind: Service
metadata:
 name: nginx
spec:
 type: NodePort
 ports:
  - port: 80
    nodePort: 33333
 selector:
   app: nginx

执行命令:kubectl create -f nginx-svc.yaml

  • 查看pod
kubectl get pods

提示:No resources found
找不到该命令
解决上边这个问题,第一步需要执行前边所讲过的(vi /etc/kubernetes/apiserver,去掉里边的ServiceAccount),第二步需要搭建自己的私有仓库,在node1与node2上搭建一下私有仓库(node1与node2都需要执行下边的步骤):

docker pull registry
docker run -di --name=registry -p 5000:5000 registry
修改这个文件
vi /etc/docker/daemon.json
# daemon.json内容是(ip是当前机器的IP):
{"registry-mirrors":["https://docker.mirrors.ustc.edu.cn"],
"insecure-registries":["192.168.237.134:5000"]
}
重启docker服务 systemctl restart docker

容器化Kubernetes(k8s)_第24张图片

1、docker pull kubernetes/pause
2、docker tag docker.io/kubernetes/pause:latest 192.168.237.134:5000/google_containers/pause-amd64.3.0
3、docker push 192.168.237.134:5000/google_containers/pause-amd64.3.0
4、vi /etc/kubernetes/kubelet,在引号里的最前边加上如下内容(注意:pod前是两个横杠)
–pod_infra_container_image=192.168.237.134:5000/google_containers/pause-amd64.3.0
在这里插入图片描述
5、重启kubelet服务 systemctl restart kubelet
(查看状态:systemctl status kubelet)
执行kubectl get pods就不会报错了:
容器化Kubernetes(k8s)_第25张图片
再等一会,就会变成Running
容器化Kubernetes(k8s)_第26张图片

  • 查看具体pod详情
kubectl describe  pods nginx-w2lcb

容器化Kubernetes(k8s)_第27张图片
详情:
容器化Kubernetes(k8s)_第28张图片
在node机器上查看镜像
在这里插入图片描述
发现已经有了nginx镜像,主要是因为在master机器里定义了nginx-rc.yaml,里边定义了nginx镜像,会自动下载到各个node节点里;

容器化Kubernetes(k8s)_第29张图片

3、阶段总结

3.1、K8S架构和组件

容器化Kubernetes(k8s)_第30张图片

3.1.1 Master

  • Kubernetes API Server

    作为Kubernetes系统的入口,其封装了核心对象的增删改查操作,以RESTful API接口方式提供给外部客户和内部组件调用。维护的REST对象持久化到Etcd中存储。

  • Kubernetes Scheduler
    为新建立的Pod进行节点(node)选择(即分配机器),负责集群的资源调度。组件抽离,可以方便替换成其他调度器。

  • Kubernetes Controller

    负责执行各种控制器,目前已经提供了很多控制器来保证Kubernetes的正常运行。

  • Replication Controller

    管理维护Replication Controller,关联Replication Controller和Pod,保证Replication Controller定义的副本数量与实际运行Pod数量一致。

3.1.2 Node

  • Kubelet

    负责管控容器,Kubelet会从Kubernetes API Server接收Pod的创建请求,启动和停止容器,监控容器运行状态并汇报给Kubernetes API Server。

  • Kubernetes Proxy

    负责为Pod创建代理服务,Kubernetes Proxy会从Kubernetes API Server获取所有的Service信息,并根据Service的信息创建代理服务,实现Service到Pod的请求路由和转发,从而实现Kubernetes层级的虚拟转发网络。

  • Docker

    Node上需要运行容器服务

3.2.K8S集群搭建常见问题

  • 解决 kubectl get pods时No resources found问题

    1、vim /etc/kubernetes/apiserver
    2、找到”KUBE_ADMISSION_CONTROL="- admission_control=NamespaceLifecycle,NamespaceExists,LimitRanger,SecurityContextDeny,ServiceAccount,ResourceQuota",去掉ServiceAccount,保存退出。
    3、systemctl restart kube-apiserver 重启此服务

  • pull 失败

    • 解决方案1

      1、yum install rhsm -y

      2、docker pull registry.access.redhat.com/rhel7/pod-infrastructure:latest

      如果以上两步解决问题了,那么就不需要在执行下面操作

      3、docker search pod-infrastructure

      4、docker pull docker.io/tianyebj/pod-infrastructure

      5、docker tag tianyebj/pod-infrastructure 192.168.126.143:5000/pod-infrastructure

      6、docker push 192.168.126.143:5000/pod-infrastructure

      7、vi /etc/kubernetes/kubelet

      修改 KUBELET_POD_INFRA_CONTAINER="–pod-infra-container-image=192.168.126.143:5000/pod- infrastructure:latest"

      8、重启服务

      systemctl restart kube-apiserver
      systemctl restart kube-controller-manager
      systemctl restart kube-scheduler
      systemctl restart kubelet
      systemctl restart kube-proxy

    • 解决方案2

      1、docker pull kubernetes/pause

      2、docker tag docker.io/kubernetes/pause:latest 192.168.126.143:5000/google_containers/pause-amd64.3.0

      3、docker push 192.168.126.143:5000/google_containers/pause-amd64.3.0

      4、vi /etc/kubernetes/kubelet配置为

      ​ KUBELET_ARGS="–pod_infra_container_image=192.168.126.143:5000/google_containers/pause-amd64.3.0"

      5、重启kubelet服务 systemctl restart kubelet

    私有仓库搭建
    docker pull registry
    docker run -di --name=registry -p 5000:5000 registry
    修改daemon.json {"insecure-registries":["192.168.126.148:5000"]}
    重启docker服务 systemctl restart docker
    

3.3.常用命令

  • 获取当前命名空间下的容器

    kubectl get pods

  • 获取所有容器l列表

    kubectl get all

  • 创建 容器

    kubectl create -f kubernate-pvc.yaml

  • 删除容器

    kubectl delete pods/test-pd 或者 kubectl delete -f rc-nginx.yaml

  • 查看指定pod跑在哪个node上

    kubectl get pod /test-pd -o wide

  • 查看容器日志

    Kubectl logs nginx-8586cf59-mwwtc

  • 进入容器终端命令

    kubectl exec -it nginx-8586cf59-mwwtc /bin/bash

  • 一个Pod里含有多个容器 用–container or -c 参数。

    例如:假如这里有个Pod名为my-pod,这个Pod有两个容器,分别名为main-app 和 helper-app,下面的命令将打开到main-app的shell的容器里。

    kubectl exec -it my-pod --container main-app – /bin/bash

  • 容器详情列表

    kubectl describe pod/mysql- m8rbl

  • 查看容器状态

    kubectl get svc

4、容器化进阶Kubernetes核心技术

Pod详解

Pod是Kubernetes的最重要概念,每一个Pod都有一个特殊的被称为”根容器“的Pause容器。Pause容器对应的镜像属于Kubernetes平台的一部分,除了Pause容器,每个Pod还包含一个或多个紧密相关的用户业务容器;
容器化Kubernetes(k8s)_第31张图片

容器化Kubernetes(k8s)_第32张图片

  • Pod vs 应用
    每个Pod都是应用的一个实例,有专用的IP
  • Pod vs 容器
    一个Pod可以有多个容器,彼此间共享网络和存储资源,每个Pod 中有一个Pause容器保存所有的容器状态,通过管理pause容器,达到管理pod中所有容器的效果
  • Pod vs 节点
    同一个Pod中的容器总会被调度到相同Node节点,不同节点间Pod的通信基于虚拟二层网络技术实现
  • Pod vs Pod
    普通的Pod和静态Pod

4.1 Pod的定义

下面是yaml文件定义的Pod的完整内容

apiVersion: v1 //版本
kind: Pod //类型,pod
metadata: //元数据
  name: string //元数据,pod的名字
  namespace: string //元数据,pod的命名空间
  labels: //元数据,标签列表
    - name: string //元数据,标签的名字
  annotations: //元数据,自定义注解列表
    - name: string //元数据,自定义注解名字
spec: //pod中容器的详细定义


  containers: //pod中的容器列表,可以有多个容器
  - name: string //容器的名称
    image: string //容器中的镜像
    imagesPullPolicy: [Always|Never|IfNotPresent]//获取镜像的策略,默认值为Always,每次都尝试重新下载镜像
    command: [string] //容器的启动命令列表(不配置的话使用镜像内部的命令)
    rgs: [string] //启动参数列表
    workingDir: string //容器的工作目录
    volumeMounts: //挂载到到容器内部的存储卷设置
    - name: string
      mountPath: string //存储卷在容器内部Mount的绝对路径
      readOnly: boolean //默认值为读写
    ports: //容器需要暴露的端口号列表
    - name: string
      containerPort: int //容器要暴露的端口
      hostPort: int //容器所在主机监听的端口(容器暴露端口映射到宿主机的端口,设置hostPort时同一台宿主机将不能再启动该容器的第2份副本)
      protocol: string //TCP和UDP,默认值为TCP
    env: //容器运行前要设置的环境列表
    - name: string
      value: string
    resources:
      limits: //资源限制,容器的最大可用资源数量
        cpu: Srting
        memory: string
      requeste: //资源限制,容器启动的初始可用资源数量
        cpu: string
        memory: string
    livenessProbe: //pod内容器健康检查的设置
      exec:
        command: [string] //exec方式需要指定的命令或脚本
      httpGet: //通过httpget检查健康
        path: string
	    port: number
		host: string
		scheme: Srtring
		httpHeaders:
		- name: Stirng
		  value: string
	  tcpSocket: //通过tcpSocket检查健康
		port: number
	  initialDelaySeconds: 0//首次检查时间
	  timeoutSeconds: 0 //检查超时时间
	  periodSeconds: 0 //检查间隔时间
	  successThreshold: 0
	  failureThreshold: 0
	  securityContext: //安全配置
		privileged: falae
    restartPolicy: [Always|Never|OnFailure]//重启策略,默认值为Always
    nodeSelector: object //节点选择,表示将该Pod调度到包含这些label的Node上,以key:value格式指定
    imagePullSecrets:
    - name: string
	
    hostNetwork: false //是否使用主机网络模式,弃用Docker网桥,默认否

    volumes: //在该pod上定义共享存储卷列表
    - name: string
	  emptyDir: {} //是一种与Pod同生命周期的存储卷,是一个临时目录,内容为空
      hostPath: //Pod所在主机上的目录,将被用于容器中mount的目录
        path: string
      secret: //类型为secret的存储卷
        secretName: string
        item:
        - key: string
          path: string
      configMap: //类型为configMap的存储卷
        name: string
        items:
        - key: string
          path: string

4.2 Pod的基本用法

在kubernetes中对运行容器的要求为:容器的主程序需要一直在前台运行,而不是后台运行。应用需要改造成前台运行的方式。如果我们创建的Docker镜像的启动命令是后台执行程序,则在kubelet创建包含这个容器的pod之后运行完该命令,即认为Pod已经结束,将立刻销毁该Pod。如果为该Pod定义了RC,则创建、销毁会陷入一个无限循环的过程中。
Pod可以由1个或多个容器组合而成

  • 由一个容器组成的Pod示例
# 一个容器组成的Pod
apiVersion: v1
kind: Pod
metadata:
  name: mytomcat
  labels:
    name: mytomcat
spec:
  containers:
  - name: mytomcat
    image: tomcat
    ports:
    - containerPort: 8000
  • 由两个为紧耦合的容器组成的Pod示例
#两个紧密耦合的容器
apiVersion: v1
kind: Pod
metadata:
  name: myweb
  labels:
    name: tomcat-redis
spec:
  containers:
  - name: tomcat
    image: tomcat
    ports:
    - containerPort: 8080
  - name: redis
    image: redis
    ports:
    - containerPort: 6379
  • 创建
kubectl create -f xxx.yaml
  • 查看
kubectl get pod/po 
kubectl get pod/po  -o wide
kubectl describe pod/po 
  • 删除
kubectl delete -f pod pod_name.yaml
kubectl delete pod --all/[pod_name]

4.3 Pod的分类

Pod有两种类型

  • 普通Pod
    普通Pod一旦被创建,就会被放入到etcd中存储,随后会被Kubernetes Master调度到某个具体的Node上并进行绑定,随后该Pod对应的Node上的kubelet进程实例化成一组相关的Docker容器并启动起来。在默认况下,当Pod里某个容器停止时,Kubernetes会自动检测到这个问题并且重新启动这个Pod里某所有容器,如果Pod所在的Node宕机,则会将这个Node上的所有Pod重新调度到其它节点上。
  • 静态Pod
    静态Pod是由kubelet进行管理的仅存在于特定Node上的Pod,它们不能通过 API Server进行管理,无法与ReplicationController、Deployment或DaemonSet进行关联,并且kubelet也无法对它们进行健康检查;

4.4 Pod生命周期和重启策略

  • Pod的状态
状态值 说明
Pending API Server已经创建了该Pod,但Pod中的一个或多个容器的镜像还没有创建,包括镜像 下载过程
Running Pod内所有容器已创建,且至少一个容器处于运行状态、正在启动状态或正在重启状态
Completed Pod内所有容器均成功执行退出,且不会再重启
Failed Pod内所有容器均已退出,但至少一个容器退出失败
Unknown 由于某种原因无法获取Pod状态,例如网络通信不畅
  • Pod重启策略
    Pod的重启策略包括Always、OnFailure和Never,默认值是Always
启策略 说明
Always 当容器失效时,由kubelet自动重启该容器
OnFailure 当容器终止运行且退出码不为0时,由kubelet自动重启该容器
Never Pod内所有容器均成功执行退出,且不会再重启
  • 常见状态转换
Pod包含的容器数 Pod当前的状态 发生事件 Pod的结果状态
RestartPolicy=Always RestartPolicy=OnFailure RestartPolicy=Never
包含一个容器 Running 容器成功退出 Running Succeeded Succeeded
包含一个容器 Running 容器失败退出 Running Running Failure
包含两个容器 Running 1个容器失败退出 Running Running Running
包含两个容器 Running 容器被OOM杀掉 Running Running Failure

4.5 Pod资源配置

每个Pod都可以对其能使用的服务器上的计算资源设置限额,Kubernetes中可以设置限额的计算资源有CPU与Memory两种,其中CPU的资源单位为CPU数量,是一个绝对值而非相对值。Memory配额也是一个绝对值,它的位是内存字节数。
Kubernetes里,一个计算资源进行配额限定需要设定以下两个参数:

  • Requests 该资源最小申请数量,系统必须满足要求
  • Limits 该资源最大允许使用的量,不能突破,当容器试图使用超过这个量的资源时,可能会被KubernetesKill并重启
sepc
  containers:
  - name: db
    image: mysql
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"

上述代码表明MySQL容器申请最少0.25个CPU以及64MiB内存,在运行过程中容器所能使用的资源配额为0.5个CPU以及128MiB内存

5、Label详解

Label是Kubernetes系统中另一个核心概念。一个Label是一个key=value的键值对,其中key与value由用户自己指定。Label可以附加到各种资源对象上,如Node、Pod、Service、RC,一个资源对象可以定义任意数量的Label,同一个Label也可以被添加到任意数量的资源对象上,Label通常在资源对象定义时确定,也可以在对象创建后动态添加或删除。
Label的最常见的用法是使用metadata.labels字段,来为对象添加Label,通过spec.selector来引用对象

apiVersion: v1
kind: ReplicationController
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
  app: nginx
 template:
  metadata:
   labels:
    app: nginx
  spec:
   containers:
   - name: nginx
     image: nginx
     ports:
     - containerPort: 80
-------------------------------------
apiVersion: v1
kind: Service
metadata:
 name: nginx
 
spec:
type: NodePort
ports:
 - port: 80
   nodePort: 3333
selector:
app: nginx

Label附加到Kubernetes集群中的各种资源对象上,目的就是对这些资源对象进行分组管理,而分组管理的核心就是Label Selector。Label与Label Selector都是不能单独定义,必须附加在一些资源对象的定义文件上,一般附加在RC和Service的资源定义文件中;

6、Replication Controller详解

Replication Controller(RC)是Kubernetes系统中核心概念之一,当我们定义了一个RC并提交到Kubernetes集群中以后,Master节点上的Controller Manager组件就得到通知,定期检查系统中存活的Pod,并确保目标Pod实例的数量刚好等于RC的预期值,如果有过多或过少的Pod运行,系统就会停掉或创建一些Pod.此外我们也可以通过修改RC的副本数量,来实现Pod的动态缩放功能

kubectl scale rc nginx --replicas=5

由于Replication Controller与Kubernetes代码中的模块Replication Controller同名,所以在Kubernetes v1.2时,它就升级成了另外一个新的概念Replica Sets,官方解释为下一代的RC,它与RC区别是:Replica Sets支援基于集合的Label selector,而RC只支持基于等式的Label Selector。我们很少单独使用Replica Set,它主要被Deployment这个更高层面的资源对象所使用,从而形成一整套Pod创建、删除、更新的编排机制。最好不要越过RC直接创建Pod,因为Replication Controller会通过RC管理Pod副本,实现自动创建、补足、替换、删除Pod副本,这样就能提高应用的容灾能力,减少由于节点崩溃等意外状况造成的损失。即使应用程序只有一个Pod副本,也强烈建议使用RC来定义Pod;

7、Replica Set详解

ReplicaSet 跟 ReplicationController 没有本质的不同,只是名字不一样,并且 ReplicaSet 支持集合式的selector(ReplicationController 仅支持等式)。Kubernetes官方强烈建议避免直接使ReplicaSet,而应该通过Deployment来创建RS和Pod。由于ReplicaSet是ReplicationController的代替物,因此用法基本相同,唯一的区别在于ReplicaSet支持集合式的selector;

8、Deployment详解

Deployment是Kubenetes v1.2引入的新概念,引入的目的是为了更好的解决Pod的编排问题,Deployment内部使用了Replica Set来实现。Deployment的定义与Replica Set的定义很类似,除了API声明与Kind类型有所区别:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: frontend
spec:
  replicas: 1
  selector:
  
    matchLabels:
    tier: frontend
  matchExpressions:
    - {key: tier, operator: In, values: [frontend]}
template:
  metadata:
    labels:
      app: app-demo
      tier: frontend
    spec:
      containers:
      - name: tomcat-demo
        image: tomcat
        ports:
        - containerPort: 8080

9、Horizontal Pod Autoscaler

Horizontal Pod Autoscal(Pod横向扩容 简称HPA)与RC、Deployment一样,也属于一种Kubernetes资源对象。通过追踪分析RC控制的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,这是HPA的实现原理。
Kubernetes对Pod扩容与缩容提供了手动和自动两种模式,手动模式通过kubectl scale命令对一个
Deployment/RC进行Pod副本数量的设置。自动模式则需要用户根据某个性能指标或者自定义业务指标,并指定Pod副本数量的范围,系统将自动在这个范围内根据性能指标的变化进行调整;

  • 手动扩容和缩容
kubectl scale deployment frontend --replicas 1
  • 自动扩容和缩容

HPA控制器基本Master的kube-controller-manager服务启动参数 --horizontal-pod-autoscaler-sync-period定义的时长(默认值为30s),周期性地监测Pod的CPU使用率,并在满足条件时对RC或Deployment中的Pod副本数量进行调整,以符合用户定义的平均Pod CPU使用率;

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: nginx-deployment
spec:
  replicas: 1
  template:
    metadata:
      name: nginx
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx
        
        resources:
        requests:
          cpu: 50m
     ports:
     - containerPort: 80
-------------------------------
apiVersion: v1
kind: Service
metadata:
  name: nginx-svc
spec:
  ports:
  - port: 80
  selector:
    app: nginx
-----------------------------------
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: nginx-hpa
spec:
  scaleTargetRef:
    apiVersion: app/v1beta1
    kind: Deployment
    name: nginx-deployment
  minReplicas: 1
  maxReplicas: 10
  targetCPUUtilizationPercentage: 50

10、Volume详解

Volume是Pod中能够被多个容器访问的共享目录。Kubernetes的Volume定义在Pod上,它被一个Pod中的多个容器挂载到具体的文件目录下。Volume与Pod的生命周期相同,但与容器的生命周期不相关,当容器终止或重启时,Volume中的数据也不会丢失。要使用volume,pod需要指定volume的类型和内容( spec.volumes 字段),和映射到容器的位置( spec.containers.volumeMounts 字段)。 Kubernetes支持多种类型的Volume,包括:
emptyDir、hostPath、gcePersistentDisk、awsElasticBlockStore、nfs、iscsi、flocker、glusterfs、rbd、cephfs、gitRepo、secret、persistentVolumeClaim、downwardAPI、azureFileVolume、azureDisk、vsphereVolume、Quobyte、PortworxVolume、ScaleIO

  • emptyDir
    EmptyDir类型的volume创建于pod被调度到某个宿主机上的时候,而同一个pod内的容器都能读写EmptyDir中的同一个文件。一旦这个pod离开了这个宿主机,EmptyDir中的数据就会被永久删除。所以目前EmptyDir类型的volume主要用作临时空间,比如Web服务器写日志或者tmp文件需要的临时目录。yaml示例如下
apiVersion: v1
kind: Pod
metadata:
  name: test-pd
spec:
  containers:
  - image: docker.io/nazarpc/webserver
    name: test-container
  volumeMounts:
  - mountPath: /cache
    name: cache-volume
volumes:
- name: cache-volume
  emptyDir: {}
  • hostPath

HostPath属性的volume使得对应的容器能够访问当前宿主机上的指定目录。例如,需要运行一个访问
Docker系统目录的容器,那么就使用/var/lib/docker目录作为一个HostDir类型的volume;或者要在一个容器内部运行CAdvisor,那么就使用/dev/cgroups目录作为一个HostDir类型的volume。一旦这个pod离开了这个宿主机,HostDir中的数据虽然不会被永久删除,但数据也不会随pod迁移到其他宿主机上。因此,需要注意的是,由于各个宿主机上的文件系统结构和内容并不一定完全相同,所以相同pod的HostDir可能会在不同的宿主机上表现出不同的行为。yaml示例如下:

apiVersion: v1
kind: Pod
metadata:
  name: test-pd
spec:
  containers:
  - image: docker.io/nazarpc/webserver
    name: test-container
    # 指定在容器中挂接路径
    volumeMounts:
    - mountPath: /test-pd
      name: test-volume
     # 指定所提供的存储卷
      volumes:
  - name: test-volume
    # 宿主机上的目录
    hostPath:
      # directory location on host
      path: /data
  • nfs
    NFS类型的volume。允许一块现有的网络硬盘在同一个pod内的容器间共享。yaml示例如下:
apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
  name: redis
spec:
  selector:
    matchLabels:
      app: redis
  revisionHistoryLimit: 2
  template:
    metadata:
      labels:
        app: redis
    spec:
      containers:
      # 应用的镜像
      - image: redis
      name: redis
      imagePullPolicy: IfNotPresent
      # 应用的内部端口
      ports:
      - containerPort: 6379
         name: redis6379
      env:
       - name: ALLOW_EMPTY_PASSWORD
         value: "yes"
       - name: REDIS_PASSWORD
         value: "redis"
       # 持久化挂接位置,在docker中
       volumeMounts:
       - name: redis-persistent-storage
         mountPath: /data
    volumes:
    # 宿主机上的目录
    - name: redis-persistent-storage
      nfs:
      path: /k8s-nfs/redis/data
      server: 192.168.237.135

11、Namespace详解

Namespace在很多情况下用于实现多用户的资源隔离,通过将集群内部的资源对象分配到不同的Namespace中,形成逻辑上的分组,便于不同的分组在共享使用整个集群的资源同时还能被分别管理。Kubernetes集群在启动后,会创建一个名为"default"的Namespace,如果不特别指明Namespace,则用户创建的Pod,RC,Service都将被系统 创建到这个默认的名为default的Namespace中

  • Namespace创建
apiVersion: v1
kind: Namespace
metadata:
  name: development
---------------------
apiVersion: v1
kind: Pod
metadata:
  name: busybox
  namespace: development
spec:
  containers:
  - image: busybox
    command:
     - sleep
     - "3600"
   name: busybox
  • Namespace查看
kubectl get pods --namespace=development

12、Service 详解

Service是Kubernetes最核心概念,通过创建Service,可以为一组具有相同功能的容器应用提供一个统一的入口地址,并且将请求负载分发到后端的各个容器应用上

12.1、Service的定义

yaml格式的Service定义文件

apiVersion: v1
kind: Service
matadata:
  name: string
  namespace: string
  labels:
  - name: string
  annotations:
  - name: string
spec:
  selector: []
  type: string
  clusterIP: string
  sessionAffinity: string
  ports:
  - name: string
    protocol: string
    port: int
    targetPort: int
    nodePort: int
  status:
    loadBalancer:
      ingress:
        ip: string
        hostname: string
属性名称 取值类型 是否必选 取值说明
version string Required v1
kind string Required Service
metadata object Required 元数据
metadata.name string Required Service名称
metadata.namespace string Required 命名空间,默认为default
metadata.labels[] list 自定义标签属性列表
metadata.annotation[] string 自定义标签属性列表
spec object Required 详细描述
spec.selector[] list Required Label Selector配置,将选择具有指定 Label标签的Pod作为管理范围
spec.type string Required Service的类型,指定Service的访问方 式,默认值为ClusterIP。取值范围如 下:ClusterIP: 虚拟服务的IP,用于k8s 集群内部的pod访问,在Node上kubeproxy通过设置的Iptables规则进行转 发。NodePort:使用宿主机的端口,使 用能够访问各Node的外部客户端通过 Node的IP地址和端口就能访问服务。 LoadBalancer: 使用外接负载均衡器完成 到服务的负载分发,需要在 spec.status.loadBalancer字段指定外部 负载均衡器的IP地址,并同时定义 nodePort和clusterIP,用于公有云环 境
spec.clusterIP string 虚拟服务的IP地址,当type=clusterIP 时,如果不指定,则系统进行自动分 配。也可以手工指定。当 type=LoadBalancer时,则需要指定
spec.sessionAffinity string 是否支持Session,可选值为ClientIP, 表示将同一个源IP地址的客户端访问请求 都转发到同一个后端Pod。默认值为空
spec.ports[] list Service需要暴露的端口列表
spec.ports[].name string 端口名称
spec.ports[].protocol string 端口协议,支持TCP和UDP,默认值为 TCP
spec.ports[].port int 服务监听的端口号
spec.ports[].targetPort int 需要转发到后端Pod的端口号
spec.ports[].nodePort int 当spec.type=NodePort时,指定映射到 物理机的端口号
status object 当spec.type=LoadBalancer时,设置外 部负载均衡器的地址,用于公有云环境
status.loadBalancer object 外部负载均衡器
status.loadBalancer.ingress object 外部负载均衡器
status.loadBalancer.ingress.ip String 外部负载均衡器的IP地址
status.loadBalancer.ingress.hostname string 外部负载均衡器的主机名

12.2、Service的基本用法

一般来说,对外提供服务的应用程序需要通过某种机制来实现,对于容器应用最简便的方式就是通过TCP/IP机制及监听IP和端口号来实现。创建一个基本功能的Service

apiVersion: v1
kind: ReplicationController
metadata:
  name: mywebapp
spec:
  replicas: 2
  template:
    metadata:
      name: mywebapp
        labels:
          app: mywebapp
    spec:
      containers:
      - name: mywebapp
      image: tomcat
      ports:
      - containerPort: 8080

我们可以通过kubectl get pods -l app=mywebapp -o yaml | grep podIP来获取Pod的IP地址和端口号来访问Tomcat服务,但是直接通过Pod的IP地址和端口访问应用服务是不可靠的,因为当Pod所在的Node发生故障时,Pod将被kubernetes重新调度到另一台Node,Pod的地址会发生改变。我们可以通过配置文件来定义Service,再通过kubectl create来创建,这样可以通过Service地址来访问后端的Pod.

apiVersion: v1
kind: Service
metadata:
  name: mywebAppService
spec:
  ports:
  - port: 8081
    targetPort: 8080
  selector:
    app: mywebapp

12.2.1、多端口Service

有时一个容器应用也可能需要提供多个端口的服务,那么在Service的定义中也可以相应地设置为将多个端口对应到多个应用服务

apiVersion: v1
kind: Service
metadata:
  name: mywebAppService
spec:
  ports:
  - port: 8080
    targetPort: 8080
    name: web
  - port: 8005
    targetPort: 8005
    name: management
  selector:
    app: mywebapp

12.2.2、外部服务Service

在某些特殊环境中,应用系统需要将一个外部数据库作为后端服务进行连接,或将另一个集群或Namespace中的服务作为服务的后端,这时可以通过创建一个无Label Selector的Service来实现

apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  ports:
  - protocol: TCP
    port: 80
    	targetPort: 80
--------------------------
apiVersion: v1
kind: Endpoints
metadata:
  name: my-service
subsets:
- addresses:
  - IP: 10.254.74.3
  ports:
  - port: 8080

k8s部署java项目参考下边这篇文章
k8s部署java项目

你可能感兴趣的:(容器k8s,开发工具)