最长上升子序列 (LIS)

最长上升子序列 (LIS)

最长上升子序列解题报告

给定一个长度为N的数列(w[N]),求数值严格单调递增的子序列的长度最长是多少。
样例

输入格式
第一行包含整数N。

第二行包含N个整数,表示完整序列。

输出格式
输出一个整数,表示最大长度。

数据范围
1 ≤ N ≤ 1000,
−1e9 ≤ 数列中的数 ≤ 1e9

输入样例:

7
3 1 2 1 8 5 6

输出样例:

4

想法一

(动态规划) O(n^2)

* 状态表示:f[i]表示从第一个数字开始算,以w[i]结尾的最大的上升序列。(以w[i]结尾的所有上升序列中属性为最大值的那一个)

* 状态计算(集合划分):j∈(0,1,2,..,i-1), 在w[i] > w[j]时,
f[i] = max(f[i], f[j] + 1)。
有一个边界,若前面没有比i小的,f[i]为1(自己为结尾)。

最后在找f[i]的最大值。

时间复杂度

  • O(n^2)

算法

#include 

using namespace std;

const int N = 1010;

int n;
int w[N], f[N];

int main() {
    cin >> n;
    for (int i = 0; i < n; i++) cin >> w[i];

    int mx = 1;    // 找出所计算的f[i]之中的最大值,边算边找
    for (int i = 0; i < n; i++) {
        f[i] = 1;    // 设f[i]默认为1,找不到前面数字小于自己的时候就为1
        for (int j = 0; j < i; j++) {
            if (w[i] > w[j]) f[i] = max(f[i], f[j] + 1);    // 前一个小于自己的数结尾的最大上升子序列加上自己,即+1
        }
        mx = max(mx, f[i]);
    }

    cout << mx << endl;
    return 0;
}

想法二

(动态规划 + 二分) O(nlogn)

状态表示:f[i]表示长度为i的最长上升子序列,末尾最小的数字。(长度为i的最长上升子序列所有结尾中,结尾最小min的) 即长度为i的子序列末尾最小元素是什么。

状态计算:对于每一个w[i], 如果大于f[cnt-1](下标从0开始,cnt长度的最长上升子序列,末尾最小的数字),那就cnt+1,使得最长上升序列长度+1,当前末尾最小元素为w[i]。 若w[i]小于等于f[cnt-1],说明不会更新当前的长度,但之前末尾的最小元素要发生变化,找到第一个 大于或等于 (这里不能是大于) w[i],更新以那时候末尾的最小元素。

f[i]一定以一个单调递增的数组,所以可以用二分法来找第一个大于或等于w[i]的数字。但是,但是!!!f[i] 中的序列并不一定是正确的最长上升子序列。

时间复杂度

O(nlogn)

算法

#include 

using namespace std;

const int N = 1010;
int n, cnt;
int w[N], f[N];

int main() {
    cin >> n;
    for (int i = 0 ; i < n; i++) cin >> w[i];

    f[cnt++] = w[0];
    for (int i = 1; i < n; i++) {
        if (w[i] > f[cnt-1]) f[cnt++] = w[i];
        else {
            int l = 0, r = cnt - 1;
            while (l < r) {
                int mid = (l + r) >> 1;
                if (f[mid] >= w[i]) r = mid;
                else l = mid + 1;
            }
            f[r] = w[i];
        }
    }
    cout << cnt << endl;
    return 0;
}

参考:

https://www.acwing.com/solution/content/4807/

https://blog.csdn.net/lxt_Lucia/article/details/81206439

你可能感兴趣的:(二分和排序,贪心,DP,算法)