Handler可谓是Android中非常重要的一个角色,它主要负责线程之间的通信。我们最常做的就是在子线程中获得一些网络数据,再通过Handler将线程切换到主线程从而更新UI,例如我们常见的runOnUiThread(),RxJava等的线程切换,底层都是用Handler来实现的。当然,Handler还可以实现任意线程之间的通信,不一定是子线程和主线程。但是从本质上讲,Handler并不是专门用来更新UI的,它只是常被开发者用来更新UI。下面就来探一探Handler的运行机制。
一般使用Handler时都是重写Handler的handleMessage()方法,然后做一些UI上的操作
private Handler handler = new Handler(){
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
switch (msg.what) {
case 0x11:
//获取子线程传过来的数据,需要强转类型
String result = (String) msg.obj;
//更新UI操作
break;
default:
break;
}
}
};
//在子线程中做一些耗时操作、最后通过sendMessage()发送出去
private void sendMessageInWorkThread() {
new Thread(() -> {
Message message = mHandler.obtainMessage(0x11);
message.obj = "123";
//通过子线程发送消息
mHandler.sendMessage(message);
}).start();
}
那么Handler究竟是怎么切换线程的呢?我们从sendMessage()方法点进去,最后我们会发现它调用了MessageQueue的enqueueMessage()方法
Handler.java
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
MessageQueue.java
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
这里我们看到了一个新的面孔MessageQueue,字面意思是消息队列,那有没有什么隐藏的意思呢?答案是:没有。它就是一个存储Message对象的集合,虽然叫消息队列,但它的内部存储结构是采用单链表的数据结构来存储的。这段代码的主要操作其实就是对单链表的插入操作。消息队列本身只是存储消息,并不具备处理消息的能力,真正处理消息的是Looper。有人就问了,Looper是什么啊,代码里没看到啊。开头我们讲到Handler可以实现任意线程之间的通信,我们这里是主线程和子线程之间的通信,其实主线程中的Looper是在APP初始化的时候系统帮我们生成的,这也是为什么我们可以直接在主线程中使用Handler的原因。
Looper.prepareMainLooper();
// Find the value for {@link #PROC_START_SEQ_IDENT} if provided on the command line.
// It will be in the format "seq=114"
long startSeq = 0;
if (args != null) {
for (int i = args.length - 1; i >= 0; --i) {
if (args[i] != null && args[i].startsWith(PROC_START_SEQ_IDENT)) {
startSeq = Long.parseLong(
args[i].substring(PROC_START_SEQ_IDENT.length()));
}
}
}
ActivityThread thread = new ActivityThread();
thread.attach(false, startSeq);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop();
可以看到首尾两行代码就完成了Looper的创建与开启循环。此时,Handler需要的其余两个“助手”也出现了,与其说是“助手”,不如说他们三个就是一个整体,MessageQueue负责消息的存储,Looper负责取出消息,Handler负责发送消息和分发从Looper中取出的消息。上面我们讲过了MessageQueue的enqueueMessage()方法,那Looper是怎么取出消息的呢?答案就是loop()方法,如果你只是调用了Looper.prepare()方法,没有调用Looper.loop()方法,虽然不会报错,但是handler是收不到消息的。我们看一下loop()方法做了哪些事
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
boolean slowDeliveryDetected = false;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
try {
msg.target.dispatchMessage(msg);
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (slowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
slowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
slowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
很长,但核心代码只有几行,大致流程就是开启一个死循环,唯一跳出循环的方式就是MessageQueue的next方法返回了null,loop方法会调用MessageQueue的next方法来获取新消息,如果MessageQueue的next方法返回了新消息,Looper就会处理这条消息:msg.target.dispatchMessage(msg),这里的msg.target就是发送这条消息的handler对象,这样Handler发送的消息最终又交给它的dispatchMessage()方法来处理了。但这里不同的是,Handler的dispatchMessage()方法是在创建Handler时所使用的Looper中执行的,这样就成功的将代码逻辑切换到指定的线程中去执行了。
最后就由我们的“主角”Handler去发送和分发消息了,Handler的所有post()、send()方法最后都只会调用到sendMessageAtTime()
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
最后一行代码有木有很熟悉,对,它就是我们开篇提到的enqueueMessage()方法。之后就是一个又一个轮回,那该怎么结束轮回呢?上面说到处理消息时会调用到dispatchMessage()方法,来看一下dispatchMessage():
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
分三步:
1.优先回调msg.callback。
2.其次回调handler构造函数中的callback的handleMessage()。
3.最后回调handler的handleMessage()。
难怪我们必须要重写handleMessage()方法。
撸完一遍源码之后,我们来捋一捋这整个流程。首先我们创建了一个Handler并重写handleMessage()方法,如果是在子线程中创建则需要在创建Handler前后分别调用Looper.prepare()和Looper.loop(),接下来在需要发送消息的地方调用send()或者post()系列方法,最终都会调用到sendMessageAtTime()方法,接着它会调用MessageQueue的enqueueMessage()方法将消息插入到MessageQueue中,然后Looper发现有消息到来,就会处理这个消息,最终消息中的Runnable或者Handler的handleMessage方法就会被调用。