人人都有个Handler原理讲解

概况

Handler可谓是Android中非常重要的一个角色,它主要负责线程之间的通信。我们最常做的就是在子线程中获得一些网络数据,再通过Handler将线程切换到主线程从而更新UI,例如我们常见的runOnUiThread(),RxJava等的线程切换,底层都是用Handler来实现的。当然,Handler还可以实现任意线程之间的通信,不一定是子线程和主线程。但是从本质上讲,Handler并不是专门用来更新UI的,它只是常被开发者用来更新UI。下面就来探一探Handler的运行机制。

先来一段常用的代码

一般使用Handler时都是重写Handler的handleMessage()方法,然后做一些UI上的操作

 private Handler handler = new Handler(){
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
            switch (msg.what) {
                case 0x11:
                    //获取子线程传过来的数据,需要强转类型
                    String result = (String) msg.obj;
                    //更新UI操作
                    break;
                default:
                    break;
            }
        }
    };
 //在子线程中做一些耗时操作、最后通过sendMessage()发送出去
 private void sendMessageInWorkThread() {
        new Thread(() -> {
            Message message = mHandler.obtainMessage(0x11);
            message.obj = "123";
            //通过子线程发送消息
            mHandler.sendMessage(message);
        }).start();
    }

MessageQueue

那么Handler究竟是怎么切换线程的呢?我们从sendMessage()方法点进去,最后我们会发现它调用了MessageQueue的enqueueMessage()方法

  Handler.java
  private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
 MessageQueue.java
 boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

这里我们看到了一个新的面孔MessageQueue,字面意思是消息队列,那有没有什么隐藏的意思呢?答案是:没有。它就是一个存储Message对象的集合,虽然叫消息队列,但它的内部存储结构是采用单链表的数据结构来存储的。这段代码的主要操作其实就是对单链表的插入操作。消息队列本身只是存储消息,并不具备处理消息的能力,真正处理消息的是Looper。有人就问了,Looper是什么啊,代码里没看到啊。开头我们讲到Handler可以实现任意线程之间的通信,我们这里是主线程和子线程之间的通信,其实主线程中的Looper是在APP初始化的时候系统帮我们生成的,这也是为什么我们可以直接在主线程中使用Handler的原因。

 		Looper.prepareMainLooper();
        // Find the value for {@link #PROC_START_SEQ_IDENT} if provided on the command line.
        // It will be in the format "seq=114"
        long startSeq = 0;
        if (args != null) {
            for (int i = args.length - 1; i >= 0; --i) {
                if (args[i] != null && args[i].startsWith(PROC_START_SEQ_IDENT)) {
                    startSeq = Long.parseLong(
                            args[i].substring(PROC_START_SEQ_IDENT.length()));
                }
            }
        }
        ActivityThread thread = new ActivityThread();
        thread.attach(false, startSeq);
        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }
        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }
        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();

Looper

可以看到首尾两行代码就完成了Looper的创建与开启循环。此时,Handler需要的其余两个“助手”也出现了,与其说是“助手”,不如说他们三个就是一个整体,MessageQueue负责消息的存储,Looper负责取出消息,Handler负责发送消息和分发从Looper中取出的消息。上面我们讲过了MessageQueue的enqueueMessage()方法,那Looper是怎么取出消息的呢?答案就是loop()方法,如果你只是调用了Looper.prepare()方法,没有调用Looper.loop()方法,虽然不会报错,但是handler是收不到消息的。我们看一下loop()方法做了哪些事

   public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;
        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
        // Allow overriding a threshold with a system prop. e.g.
        // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
        final int thresholdOverride =
                SystemProperties.getInt("log.looper."
                        + Process.myUid() + "."
                        + Thread.currentThread().getName()
                        + ".slow", 0);
        boolean slowDeliveryDetected = false;
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
            final long traceTag = me.mTraceTag;
            long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
            long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
            if (thresholdOverride > 0) {
                slowDispatchThresholdMs = thresholdOverride;
                slowDeliveryThresholdMs = thresholdOverride;
            }
            final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
            final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
            final boolean needStartTime = logSlowDelivery || logSlowDispatch;
            final boolean needEndTime = logSlowDispatch;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
            final long dispatchEnd;
            try {
                msg.target.dispatchMessage(msg);
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (logSlowDelivery) {
                if (slowDeliveryDetected) {
                    if ((dispatchStart - msg.when) <= 10) {
                        Slog.w(TAG, "Drained");
                        slowDeliveryDetected = false;
                    }
                } else {
                    if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                            msg)) {
                        // Once we write a slow delivery log, suppress until the queue drains.
                        slowDeliveryDetected = true;
                    }
                }
            }
            if (logSlowDispatch) {
                showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }
            msg.recycleUnchecked();
        }
    }

很长,但核心代码只有几行,大致流程就是开启一个死循环,唯一跳出循环的方式就是MessageQueue的next方法返回了null,loop方法会调用MessageQueue的next方法来获取新消息,如果MessageQueue的next方法返回了新消息,Looper就会处理这条消息:msg.target.dispatchMessage(msg),这里的msg.target就是发送这条消息的handler对象,这样Handler发送的消息最终又交给它的dispatchMessage()方法来处理了。但这里不同的是,Handler的dispatchMessage()方法是在创建Handler时所使用的Looper中执行的,这样就成功的将代码逻辑切换到指定的线程中去执行了。

Handler

最后就由我们的“主角”Handler去发送和分发消息了,Handler的所有post()、send()方法最后都只会调用到sendMessageAtTime()

 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

最后一行代码有木有很熟悉,对,它就是我们开篇提到的enqueueMessage()方法。之后就是一个又一个轮回,那该怎么结束轮回呢?上面说到处理消息时会调用到dispatchMessage()方法,来看一下dispatchMessage():

 public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

分三步:
1.优先回调msg.callback。
2.其次回调handler构造函数中的callback的handleMessage()。
3.最后回调handler的handleMessage()。
难怪我们必须要重写handleMessage()方法。

总结

撸完一遍源码之后,我们来捋一捋这整个流程。首先我们创建了一个Handler并重写handleMessage()方法,如果是在子线程中创建则需要在创建Handler前后分别调用Looper.prepare()和Looper.loop(),接下来在需要发送消息的地方调用send()或者post()系列方法,最终都会调用到sendMessageAtTime()方法,接着它会调用MessageQueue的enqueueMessage()方法将消息插入到MessageQueue中,然后Looper发现有消息到来,就会处理这个消息,最终消息中的Runnable或者Handler的handleMessage方法就会被调用。

附上一张图片

人人都有个Handler原理讲解_第1张图片
以上,有错误之处敬请指出!

你可能感兴趣的:(人人都有个Handler原理讲解)