GAN代码整理

from datetime import datetime
import os
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from six.moves import xrange
data = np.load('data/final37.npy')
data = data[:,:,0:60]
#显示原始数据图像
def Show_images(data,show_nums,save=False):
    index = 0
    for n in range(show_nums):
        show_images = data[index:index+100]
        show_images = show_images.reshape(100,3,60,1)
        r,c = 10,10
        fig,axs = plt.subplots(r,c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                xy = show_images[cnt]
                for k in range(len(xy)):
                    x = xy[k][0:30]
                    y = xy[k][30:60]
                    if k == 0 :
                        axs[i,j].plot(x,y,color='blue',linewidth=2)
                    if k == 1:
                        axs[i,j].plot(x,y,color='red',linewidth=2)
                    if k == 2:
                        axs[i,j].plot(x,y,color='green',linewidth=2)
                        axs[i,j].axis('off')
                cnt += 1
        index += 100
        if save:
            if not os.path.exists('This_epoch'):
                os.makedirs('This_epoch')
            fig.savefig('This_epoch/%d.jpg' % n)
            plt.close()
        else:
            plt.show()
            
def Save_genImages(gen, epoch):
    r,c = 10,10
    fig,axs = plt.subplots(r,c)
    cnt = 0
    for i in range(r):
        for j in range(c):
            xy = gen[cnt]
            for k in range(len(xy)):
                x = xy[k][0:30]
                y = xy[k][30:60]
                if k == 0:
                    axs[i,j].plot(x,y,color='blue')
                if k == 1:
                    axs[i,j].plot(x,y,color='red')
                if k == 2:
                    axs[i,j].plot(x,y,color='green')
                    axs[i,j].axis('off')
            cnt += 1
    if not os.path.exists('gen_img1'):
        os.makedirs('gen_img1')
    fig.savefig('gen_img1/%d.jpg' % epoch)
    plt.close()
def Save_lossValue(epoch,iters,d_loss,g_loss):
    with open('losst.txt','a') as f:
        f.write("第%d个epoch,第%d个batch , d_loss: %.8f, g_loss: %.8f"%(epoch, iters, d_loss, g_loss)+'\n')
def plot_loss(loss):
    fig,ax = plt.subplots(figsize=(20,7))
    losses = np.array(loss)
    plt.plot(losses.T[0], label="Discriminator Loss")
    plt.plot(losses.T[1], label="Generator Loss")
    plt.title("Training Losses")
    plt.legend()
    plt.savefig('loss.jpg')
    plt.show()
#定义Relu激活函数
def Relu(name, tensor):
    return tf.nn.relu(tensor,name)

#定义LeakyRelu激活函数
def LeakyRelu(name, x, leak=0.2):
    return tf.maximum(x,leak*x,name=name)

#定义全连接层
def Fully_connected(name, value, output_shape):
    with tf.variable_scope(name,reuse=None) as scope:
        shape = value.get_shape().as_list()
        w = tf.get_variable('w',[shape[1],output_shape],dtype=tf.float32,
                            initializer=tf.random_normal_initializer(stddev=0.01))
        b = tf.get_variable('b',[output_shape],dtype=tf.float32,initializer=tf.constant_initializer(0.0))
        
        return tf.matmul(value,w) + b
    
#定义一维卷积
def Conv1d(name, tensor, ksize, out_dim, stride, padding, stddev=0.01):
    with tf.variable_scope(name):
        w = tf.get_variable('w',[ksize,tensor.get_shape()[-1],out_dim],dtype=tf.float32,
                            initializer=tf.random_normal_initializer(stddev=stddev))
        var = tf.nn.conv1d(tensor,w,stride,padding=padding)
        b = tf.get_variable('b',[out_dim],'float32',initializer=tf.constant_initializer(0.01))
        
        return tf.nn.bias_add(var,b)
    
#定义二维卷积
def Conv2d(name, tensor, filter_size1 ,filter_size2, out_dim, stride1, stride2, padding, stddev=0.01):
    with tf.variable_scope(name):
        w = tf.get_variable('w',[filter_size1, filter_size2, tensor.get_shape()[-1], out_dim], dtype=tf.float32,
                            initializer=tf.random_normal_initializer(stddev=stddev))
        var = tf.nn.conv2d(tensor, w, [1, stride1, stride2, 1], padding=padding)
        b = tf.get_variable('b',[out_dim], 'float32', initializer=tf.constant_initializer(0.01))
        
        return tf.nn.bias_add(var,b)
    
#定义二维反卷积
def Deconv2d(name, tensor, filter_size1, filter_size2, outshape, stride1, stride2, padding, stddev=0.01):
    with tf.variable_scope(name):
        w = tf.get_variable('w', [filter_size1, filter_size2, outshape[-1], tensor.get_shape()[-1]], dtype=tf.float32,
                                 initializer=tf.random_normal_initializer(stddev=stddev))
        var = tf.nn.conv2d_transpose(tensor, w, outshape, strides=[1,stride1, stride2, 1], padding=padding)
        b = tf.get_variable('b', [outshape[-1]],'float32', initializer=tf.constant_initializer(0.01))
        
        return tf.nn.bias_add(var,b)
def Get_inputs(real_size,noise_size):
        real_img = tf.placeholder(tf.float32, [None, real_size], name='real_img')
        noise_img = tf.placeholder(tf.float32, [None, noise_size], name='noise_img')
        
        return real_img, noise_img
    
def Generator(noise_img, reuse=False, alpha=0.01):
    with tf.variable_scope('generator',reuse=reuse):
#         print(noise_img.shape)
        output = tf.layers.dense(noise_img,128)
#         print(output.shape)
        output = tf.maximum(alpha * output,output)
        output = tf.layers.batch_normalization(output,momentum=0.8,training=True)
        output = tf.layers.dropout(output, rate=0.25)
        
        output = tf.layers.dense(output,512)
        output = tf.maximum(alpha * output,output)
        output = tf.layers.batch_normalization(output,momentum=0.8,training=True)
        output = tf.layers.dropout(output,rate=0.25)
        
        output = tf.layers.dense(output,180)
        output = tf.tanh(output)
        return output
def Discriminator(img,reuse=False,alpha=0.01):
    
    with tf.variable_scope("discriminator", reuse=reuse):
        print(img.shape)
        output = tf.layers.dense(img,512)
        output = tf.maximum(alpha * output, output)
        
        output = tf.layers.dense(output,128)
        output = tf.maximum(alpha * output, output)
        
        output = tf.layers.dense(output,1)
        return output
    
batch_size = 100
epochs = 1
n_sample = 100
learning_rate = 0.0002
lamda = 10
img_size  = 180
noise_size = 100

tf.reset_default_graph()

real_img, noise_img = Get_inputs(img_size,noise_size)#feed于此
real_data = real_img
fake_data = Generator(noise_img)

disc_real = Discriminator(real_data,reuse=False)
disc_fake = Discriminator(fake_data,reuse=True)


#生成器和判别器中的tensor
train_vars = tf.trainable_variables()
g_vars = [var for var in train_vars if var.name.startswith("generator")]
d_vars = [var for var in train_vars if var.name.startswith("discriminator")]

gen_cost = -tf.reduce_mean(disc_fake)#生成器loss
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
 
alpha = tf.random_uniform(shape=[batch_size,1],minval=0.,maxval=1.)
interpolates = alpha*fake_data + (1-alpha)*real_data
gradients = tf.gradients(Discriminator(interpolates,reuse=True),[interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients),reduction_indices=[1]))
gradient_penalty = tf.reduce_mean((slopes-1.)**2)
disc_cost += lamda * gradient_penalty




#优化器
gen_train_op = tf.train.AdamOptimizer(learning_rate=1e-4,beta1=0.5,beta2=0.9).minimize(gen_cost,var_list=g_vars)
disc_train_op = tf.train.AdamOptimizer(learning_rate=1e-4,beta1=0.5,beta2=0.9).minimize(disc_cost,var_list=d_vars)

saver = tf.train.Saver()
def Train():
    losses = []
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for e in range(epochs):
            for i in xrange(len(data)//batch_size):
                batch_images = data[i*batch_size:(i+1)*batch_size]
                batch_images = batch_images.reshape(batch_size,180)
                batch_images = batch_images*2 -1 
                batch_noise = np.random.uniform(-1,1,size=(batch_size,noise_size))
                for x in range(0,1):
                    _,d_loss = sess.run([disc_train_op,disc_cost],feed_dict={real_data:batch_images,noise_img:batch_noise})
                _,g_loss = sess.run([gen_train_op,gen_cost],feed_dict={noise_img:batch_noise})
                Save_lossValue(e,i,d_loss,g_loss)
                print("第%d个epoch,第%d个batch , d_loss: %.8f, g_loss: %.8f"%(e, i, d_loss, g_loss))
                losses.append((d_loss,g_loss))
            sample_noise = np.random.uniform(-1,1,size=(100,100))
            gen_samples = sess.run(Generator(noise_img,reuse=True),feed_dict={noise_img:sample_noise})
            print(gen_samples.shape)
            saver.save(sess,'checkpoints/test.ckpt')
            if e % 1 == 0:
                gen = gen_samples.reshape(100,3,60,1)
                Save_genImages(gen, e)
        plot_loss(losses)             

def Test():
    saver = tf.train.Saver(var_list=g_vars)
    with tf.Session() as sess:
        saver.restore(sess,tf.train.latest_checkpoint("checkpoints"))
#         saver.restore(sess,'checkppoints/b.ckpt')
        sample_noise = np.random.uniform(-1, 1, size=(10000,noise_size))
        gen_samples = sess.run(Generator(noise_img,reuse=True),feed_dict={noise_img:sample_noise})
        gen_images = (gen_samples+1)/2
        show_num = len(gen_images)//100
        Show_images(gen_images,show_num,save=True)

if __name__ == '__main__':
    Train()
    #Test()










你可能感兴趣的:(深度学习)