题目地址
Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 110 be true? The answer is yes
, if 6 is a decimal number and 110 is a binary number.
Now for any pair of positive integers N1 and N2, your task is to find the radix of one number while that of the other is given.
Each input file contains one test case. Each case occupies a line which contains 4 positive integers:
N1 N2 tag radix
Here N1
and N2
each has no more than 10 digits. A digit is less than its radix and is chosen from the set { 0-9, a
-z
} where 0-9 represent the decimal numbers 0-9, and a
-z
represent the decimal numbers 10-35. The last number radix
is the radix of N1
if tag
is 1, or of N2
if tag
is 2.
For each test case, print in one line the radix of the other number so that the equation N1
= N2
is true. If the equation is impossible, print Impossible
. If the solution is not unique, output the smallest possible radix.
6 110 1 10
2
1 ab 1 2
Impossible
PAT题目都很迷,很多地方都不说清楚输入范围。。。
这道题输入数据不会超过long long
,所以可以放心的使用基本思路计算不同进制下的值
ll getRes(string &tar, int radix) {
ll res = 0;
int len = tar.length();
for(int i = 0;i < tar.length();i++) {
res = res*radix + getNum(tar[i]);
if(res < 0) {
return -1;
}
}
return res;
}
如果每次都从进制2开始递增进制,直到一种不可能的情况出现,但这种方法对大小差距极大的两个数特别耗时,对于这种在一个序列中寻找一个正确解的过程,显然是用二分法解决。
但是二分法需要一个范围,那么这道题的进制范围是在哪一个范围。首先对于R进制的串,对于数串内的数必须小于R,所以获取此串的最小进制(下界)就显而易见了
int getNum(char tar) {
if(tar >= '0' && tar <= '9') {
return tar - '0';
}
else {
return tar - 'a' + 10;
}
}
int getMinRadix(string &tar) {
// 也可以使用C++的max_element函数
char c = '0';
for(int i = 0;i < tar.length();i++) {
if(tar[i] > c) {
c = tar[i];
}
}
return max(getNum(c) + 1, 2);
}
上界即为max(minRadix, num)
num为已知进制的数的值,因为题目中只涉及到0-35的值,所以num作为上届已经足够,因为个位是不可能达到num值的最高就是35,那么在2位数字的情况下最小也是10,此时10在num进制下就是num,所以num进制的最小值就是num,在往上就会大于num就没有必要了
所有在上下界进行二分法查找即可
代码如下:
#include
#include
#include
#include
#include
#include
//#define LOCAL
using namespace std;
typedef long long ll;
int getNum(char tar) {
if(tar >= '0' && tar <= '9') {
return tar - '0';
}
else {
return tar - 'a' + 10;
}
}
int getMinRadix(string &tar) {
char c = '0';
for(int i = 0;i < tar.length();i++) {
if(tar[i] > c) {
c = tar[i];
}
}
return max(getNum(c) + 1, 2);
}
ll getRes(string &tar, int radix) {
ll res = 0;
int len = tar.length();
for(int i = 0;i < tar.length();i++) {
res = res*radix + getNum(tar[i]);
if(res < 0) {
return -1;
}
}
return res;
}
int main() {
#ifdef LOCAL
freopen("./in.txt", "r", stdin);
#endif
string A, B;
int tag, radix;
cin >> A >> B >> tag >> radix;
if(tag == 2) {
swap(A, B);
}
// B 是 要计算的
ll tar = getRes(A, radix);
// 二分
ll left = getMinRadix(B);
ll right = max(left, tar);
while (left <= right) {
ll mid = (left + right) >> 1;
ll temp = getRes(B, mid);
if(temp == tar) {
printf("%lld", mid);
return 0;
}
if(temp < 0 || temp > tar) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
printf("Impossible");
return 0;
}