- K近邻算法_分类鸢尾花数据集
_feivirus_
算法机器学习和数学分类机器学习K近邻
importnumpyasnpimportpandasaspdfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccuracy_score1.数据预处理iris=load_iris()df=pd.DataFrame(data=ir
- python tif转png
Python与遥感
python开发语言
importosfromosgeoimportgdalimportnumpyasnpfromPILimportImage#提取432三波段fromspectralimport*#输入文件夹路径defget_img(dataset_img):width=dataset_img.RasterXSize#获取行列数height=dataset_img.RasterYSizebands=dataset_i
- 大模型微调 - 基于预训练大语言模型的对话生成任务 训练代码
西笑生
大模型大模型自然语言处理微调
大模型微调-基于预训练大语言模型的对话生成任务训练代码flyfish模型扮演堂吉诃德这个角色,回答关于自我介绍的问题importtorchfromdatasetsimportDatasetfrommodelscopeimportAutoTokenizer,AutoModelForCausalLMfrompeftimportLoraConfig,TaskType,get_peft_modelfrom
- 【HDFS】【HDFS架构】【HDFS Architecture】【架构】
资源存储库
hdfs架构hadoop
目录1Introduction介绍2AssumptionsandGoals假设和目标HardwareFailure硬件故障StreamingDataAccess流式数据访问LargeDataSets大型数据集SimpleCoherencyModel简单凝聚力模型“MovingComputationisCheaperthanMovingData”“移动计算比移动数据更便宜”PortabilityAc
- Vue3+TypeScript频谱跳动算法(附vue2+JavaScript)
I like Code?
javascripttypescript算法
以下为Vue3+TypeScript频谱跳动算法只需要调用下列方法即可实现,并且设置定时器。(最好每次先清楚,否则可能耗内存)if(updateInterval.value){clearInterval(updateInterval.value);}constupdateInterval=ref(undefined);generateDataSets();updateInterval.value=
- 分类算法可视化方法
dundunmm
数据挖掘分类数据挖掘人工智能可视化
可视化方法可以用于帮助理解分类算法的决策边界、性能和在不同数据集上的行为。下面列举几个常见的可视化方法。1.决策边界可视化这种方法用于可视化不同分类算法在二维特征空间中如何分隔不同类别。对于理解决策树、支持向量机(SVM)、逻辑回归和k近邻(k-NN)等模型的行为非常有用。importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasets
- Mitochondria
浩瀚之宇
SRASearchterm:(mitochondria)AND"Homosapiens"[orgn:__txid9606]https://www.ncbi.nlm.nih.gov/sra/?term=(mitochondria)+AND+%22Homo+sapiens%22%5Borgn%3A__txid9606%5DGEODataSetshttps://www.ncbi.nlm.nih.gov/
- python下报错AttributeError: 'NoneType' object has no attribute 'shape'
无止境x
路径问题:config.TRAIN.hr_img_path=r'D:\SR_datasets\DIV2K\DIV2K_train_HR/'#最后还要加一个/斜杠
- 【ML】支持向量机SVM及Python实现(详细)
2401_84009698
程序员支持向量机python算法
fromsklearn.preprocessingimportStandardScalerfrommatplotlib.colorsimportListedColormapfromsklearn.svmimportSVC###2.1加载数据样本加载样本数据及其分类标签iris=datasets.load_iris()X=iris.data[:,[2,3]]#按花瓣划分#X=iris.data[:,
- 基于Pytorch框架的CIFAR-10图像分类任务(附带完整代码)
难得北窗高卧
pytorch人工智能python深度学习
本文主要实现在pytorch框架下,训练CIFAR数据集,通过观察训练和验证的误差、准确率图像来进一步改善。保存最好的模型。测试集打印整体准确率和每一类别的准确率,并生成混淆矩阵,将其中每一个错误的图片并保存下来。语言:python实现方式:pytorch框架,CPU关键词:CIFAR-10数据集、Dataset和Dataloader、SummaryWriter画图、网络模型搭建、混淆矩阵、统计所
- R语言自学笔记-2内置数据集
实验室长工
#b站视频——R语言入门与数据分析#内置数据集#固定格式的数据(矩阵、数据框或一个时间序列等)#统计建模、回归分析等试验需要找合适的数据集#R内置数据集,存储在,通过help(package="datasets")#通过data函数访问这些数据集data()#得到新窗口前面:数据集名字后面:内容#包含R所有用到的数据类型,包括:向量、矩阵、列表、因子、数据框以及时间序列等#直接输入数据集的名字就可
- 鸿蒙应用开发-做一个随机转盘
阿康2024
鸿蒙应用开发harmonyos华为
使用鸿蒙三方库mpchart可以很方便地做一个滚动转盘,可以做随机选择转盘中的任一项。实现效果如下图所示:实现代码如下:import{ColorTemplate,JArrayList,MPPointF,PieChart,PieChartModel,PieData,PieDataSet,PieEntry}from'@ohos/mpchart';importanimator,{AnimatorOpti
- Spark底层逻辑
傲雪凌霜,松柏长青
大数据后端spark大数据
ApacheSpark的底层逻辑可以从其核心概念、组件和执行流程等方面来理解。Spark提供了一个分布式数据处理框架,其底层逻辑基于批处理架构,能够在大规模集群中高效地处理数据。以下是Spark的底层逻辑的详细介绍:1.核心概念Spark的底层基于几个核心概念来实现分布式计算,包括:RDD(ResilientDistributedDataset,弹性分布式数据集):RDD是Spark最基础的数据抽
- 【.NET全栈】ASP.NET开发Web应用——LINQ技术
JosieBook
#.NET全栈.netasp.netlinq
文章目录一、LINQ基础1、LINQ简介2、延迟执行3、LINQ表达式简介1、基本查询语法2、投影新对象3、过滤和排序4、分组和聚合5、联合查询二、LINQtoDataSet操作内存表1、LINQtoDataSet简介2、类型化DataSet三、LINQtoSQL操作数据库1、数据实体类2、DataContext类介绍3、在ASP.NET中应用LINQtoSQL4、自动生成数据实体类5、生成存储过
- 深度学习目标检测入门COCO数据集
日暮途远z
深度学习目标检测人工智能
常见数据集类型:COCO数据集:Pytorch加载COCO数据集:COCO数据集的读取COCO_dataset=torchvision.datasets.CocoDetection(root="./dataset/val2017",annFile="./instances_val2017/instances_val2017.json")root(strorpathlib.Path)–Rootdir
- 【数据获取与读取】JSON & CSV
yogurt=b
数据分析jsonpython
数据分析流程获取数据-读取数据-评估数据-清洗数据-整理数据-分析数据-可视化数据公开数据集飞桨(百度旗下深度学习平台)数据集:https:/aistudio.baidu.com/aistudio/datasetoverview天池(阿里云旗下开发者竞赛平台):https:/tianchiaiyun.com/dataset/和鲸社区(数据科学开源社区)数据集:htps://www.heywhale
- 30、基于SelectFromModel和LassoCV的特征选择
凌晨思索
30、基于SelectFromModel和LassoCV的特征选择importmatplotlib.pyplotaspltimportnumpyasnpfromsklearn.datasetsimportload_diabetesfromsklearn.feature_selectionimportSelectFromModelfromsklearn.linear_modelimportLasso
- pytorch建模的一般步骤
巴依老爷coder
pytorch深度学习人工智能
Pytorch的建模一般步骤1.导入必要的库2.准备数据3.定义数据集类(可选)4.加载数据5.定义模型6.定义损失函数和优化器7.训练模型8.评估模型9.保存和加载模型10.使用模型进行推理importtorch.nn.functionalasFimporttorch.nnasnnimporttorchfromtorchvisionimportdatasets,transformsimporto
- 【Python报错】已解决ModuleNotFoundError: No module named datasets
云天徽上
python运行报错解决记录numpy数据库pandas机器学习
成功解决“ModuleNotFoundError:Nomodulenameddatasets”错误的全面指南在Python编程中,遇到ModuleNotFoundError:Nomodulenameddatasets这样的错误通常意味着Python解释器无法找到名为datasets的模块。datasets是一个流行的Python库,常用于加载和处理大型数据集,特别是在自然语言处理(NLP)和机器学
- COCO8 dataset 每种代表什么
西柚与蓝莓
pytorchopencv
#UltralyticsYOLO,AGPL-3.0license#COCO8dataset(first8imagesfromCOCOtrain2017)byUltralytics#Documentation:https://docs.ultralytics.com/datasets/detect/coco8/#Exampleusage:yolotraindata=coco8.yaml#parent
- Spark
傲雪凌霜,松柏长青
后端大数据spark大数据分布式
Spark是一个快速的、通用的集群计算系统,主要用于大规模数据处理。它最早由加州大学伯克利分校的AMPLab开发,并于2010年开源,后来由Apache软件基金会管理。1.核心概念RDD(ResilientDistributedDataset):RDD是Spark的核心抽象,表示一个分布式的、不变的集合。它提供了对大数据集的容错机制,支持并行操作。DataFrame:DataFrame是基于RDD
- Object Tracking
ZoneIan
计算机视觉人工智能
目录ECCV2022ECCV2020ICCV2023CVPR2023CVPR2022ECCV20221.(MOT、指标)MOTCOM:TheMulti-ObjectTrackingDatasetComplexityMetric2.(鱼数据集、声呐视频、MOT)TheCaltechFishCountingDataset:ABenchmarkforMultiple-ObjectTrackingandC
- 机器学习实战----波士顿房价预测模型
永远偷渡不了的非洲人
机器学习机器学习sklearnpython
波士顿房价模型预测是一个回归问题,可以采用r2_score方法来作为评价指标。importnumpyasnpimportpandasaspdfromsklearn.metricsimportr2_score#从sklearn的数据库中导入波士顿房产数据fromsklearn.datasetsimportload_bostonfromsklearn.model_selectionimporttrai
- 微信小程序-改变数组的某一项
没_有_人
//动态绑定input的值inputVal:function(e){varname=e.currentTarget.dataset.name;varindex=e.currentTarget.dataset.index;varvalue='passengers['+index+'].'+name+'';this.setData({[value]:e.detail.value})},
- 【深度学习 transformer】使用pytorch 训练transformer 模型,hugginface 来啦
东华果汁哥
深度学习-文本分类深度学习transformerpytorch
HuggingFace是一个致力于开源自然语言处理(NLP)和机器学习项目的社区。它由几个关键组件组成:Transformers:这是一个基于PyTorch的库,提供了各种预训练的NLP模型,如BERT、GPT、RoBERTa、DistilBERT等。它还提供了一个简单易用的API来加载这些模型,并进行微调以适应特定的下游任务。Datasets:这是一个用于加载和预处理NLP数据集的库,与Tran
- Datawhale AI夏令营第五期CV Task01
m0_60530253
人工智能
一、报名参加2024大运河杯数据开发大赛1.登录赛事平台2.修改昵称,实名认证3.打开比赛链接报名参赛4.修改队伍名称二、领取厚德云支持的GPU在线算力!(点击即可跳转)三、体验baseline1.下载baseline相关文件aptinstallgit-lfsgitlfsinstallgitclonehttps://www.modelscope.cn/datasets/Datawhale/AI_C
- 【论文阅读】QUEEN: Query Unlearning against Model Extraction(2024)
Bosenya12
科研学习模型窃取论文阅读提取攻击模型安全
摘要Modelextractionattacks(模型提取攻击)currentlyposeanon-negligiblethreat(不可忽视的威胁)tothesecurity(安全性)andprivacy(隐私性)ofdeeplearningmodels.Byqueryingthemodelwithasmalldataset(通过小数据集查询模型)andusingthequeryresultsa
- 手势估计- Hand Pose Estimation
我在呀
首先给大家分享一个巨牛巨牛的人工智能教程,是我无意中发现的。教程不仅零基础,通俗易懂,而且非常风趣幽默,还时不时有内涵段子,像看小说一样,哈哈~我正在学习中,觉得太牛了,所以分享给大家!点这里可以跳转到教程1.目前进展1.1相关资料1)HANDSCVPR20162)HANDS2015Dataset3)CVPR20164)Hand3DPoseEstimation(ComputerVisionforA
- pyskl/datasets/pipelines/heatmap_related.py
鱼儿会飞吗
pythonnumpy开发语言
classGeneratePoseTarget:首先看def__call__(self,results):def__call__(self,results):heatmap=self.gen_an_aug(results)key='heatmap_imgs'if'imgs'inresultselse'imgs'ifself.double:indices=np.arange(heatmap.shap
- 爬取MalwareBazaar实现恶意样本数据自由
梦想闹钟
python
最近在做恶意软件的研究时,发现一个主要问题就是缺少样本,在网上搜索后发现各个开源的数据集都有各种各样的问题,如这个DikeDataSet:https://github.com/iosifache/DikeDataset优点是有白样本,缺点是黑样本分布不均且主要集中在一个家族里发现有一个比较好用的开源数据平台MalwareBazaar:https://bazaar.abuse.ch/browse/可
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f