C#矩阵类实现(基于Python及matlab矩阵规范)

目录

 

一.矩阵定义

1.指定简单矩阵的创建

2.特殊矩阵的创建

 【Matrix.Ones】

【Matrix.Eye】

【Matrix.Zeros】

 【Matrix.Random】

【Matrix.Diag】

二.矩阵的运算

【Matrix.I】

【Matrix.T】

三.矩阵类代码

四.小结


一.矩阵定义

1.指定简单矩阵的创建

//单行代码创建矩阵(推荐),以2*2的矩阵为例
Matrix a = new   Matrix(new double[,] {{2,2},{1,1}});
//多行代码创建矩阵,以2*2的矩阵为例
double[,] a = new double[2,2]{{2,2},{1,1}};
Matrix  b  = new Matrix(a);

2.特殊矩阵的创建

  •  【Matrix.Ones】

  创建元素全为1的矩阵

//生成一个指定阶数的元素全为1的方阵
Matrix a = Matrix.Ones(3);

//输出结果
1 1 1
1 1 1
1 1 1
//生成一个指定行列的矩阵并且其元素全为1
Matrix a = Matrix.Ones(2,3);

//生成结果
1 1 1 
1 1 1 
  • 【Matrix.Eye】

创建单位矩阵

//生成一个指定阶数的单位矩阵
Matrix a = Matrix.Eye(3);

//生成结果
1 0 0
0 1 0
0 0 1
  • 【Matrix.Zeros】

创建零矩阵

//生成一个指定阶数的零矩阵
Matrix a  = Matrix.Zeros(3);


//输出结果
0 0 0
0 0 0
0 0 0
//生成一个指定行列的零矩阵
Matrix a = Matrix.Zeros(2,3);

//生成结果
0 0 0
0 0 0 
  •  【Matrix.Random】

生成随机数矩阵

//创建指定维数的伪随机数矩阵(0-1)
Matrix a = Matrix.Random(2);


//输出结果
0.516404123751635 0.983861273147101
0.899167415173337 0.00153744081106849


//创建指定行和列的伪随机数矩阵
Matrix a  = Matrix.Random(2,3);


//输出结果
7.96839595212061E-05 0.147591004682514 0.695700505606691
0.0767334909535635 0.380114347850957 0.248828622628389

//创建指定维数,并且指定随机数范围的伪随机数矩阵(min-max)
Matrix a = Matrix.Random(2,10,20)


//输出结果
15.3690170521704 11.5182845441244
13.8757416298034 19.5315619183386

//创建指定行数,列数,并且指定随机数范围的伪随机数矩阵
Matrix a = Matrix.Random(2,3,10,20)


//输出结果
17.6909273945219 12.7356204915492 15.4563716824429
16.8744842786689 15.6722028579899 15.3704242572982

  • 【Matrix.Diag】

创建对角矩阵

//创建指定数据的对角矩阵(单行)

Matrix a = Matrix.Diag(new double[]{2,1,3})


//输出结果
2 0 0
0 1 0
0 0 3

 

二.矩阵的运算

矩阵相加减,矩阵乘法与基本矩阵运算相同

  • 【Matrix.I】

矩阵求逆

//矩阵求逆 
Matrix a = new Matrix ();
Matrix b = a.I;
  • 【Matrix.T】

矩阵求转置

//矩阵求转置
Matrix a = new Matrix ;
Matrix b = a.T;

三.矩阵类代码

using System;
using System.Collections.Generic;

namespace Cmath
{
    [Serializable]           //反射
    public class Matrix
    {
        public double[] element;
        private int rows = 0;
        private int cols = 0;
        private double[,] value;
        /// 
        /// 获取矩阵行数
        /// 
        public int Rows
        {
            get
            {
                return rows;
            }
            set
            {
                rows = value;
            }
        }
        /// 
        /// 获取矩阵列数
        /// 
        public int Cols
        {
            get
            {
                return cols;
            }
            set
            {
                cols = value;
            }
        }
        /// 
        /// 获取与设置矩阵元素值的二维数组
        /// 
        public double[,] Value
        {
            get
            {
                return this.value;
            }
            set
            {
                this.value = value;
            }
        }
        /// 
        /// 获取或设置第i行第j列的元素值
        /// 
        /// 第i行
        /// 第j列
        /// 返回第i行第j列的元素值
        public double this[int i, int j]
        {
            get
            {
                if (i < Rows && j < Cols)
                {
                    return element[i * cols + j];
                }
                else
                {
                    throw new Exception("索引越界");
                }
            }
            set
            {
                element[i * cols + j] = value;
            }
        }
        /// 
        /// 用二维数组初始化Matrix
        /// 
        /// 二维数组
        private Matrix()
        {

        }
        private Matrix(int rows, int cols)
        {
            this.rows = rows;
            this.cols = cols;
            this.value = new double[rows, cols];
        }
        public Matrix(double[][] m)            //构造函数
        {
            this.rows = m.GetLength(0);
            this.cols = m.GetLength(1);
            int count = 0;
            this.element = new double[Rows * Cols];
            for (int i = 0; i < rows; i++)
            {
                for (int j = 0; j < cols; j++)
                {
                    element[count++] = m[i][j];
                }
            }
        }
        public Matrix(double[,] m)
        {
            this.rows = m.GetLength(0);
            this.cols = m.GetLength(1);
            this.element = new double[this.rows * this.cols];
            int count = 0;
            for (int i = 0; i < rows; i++)
            {
                for (int j = 0; j < cols; j++)
                {
                    element[count++] = m[i, j];
                }
            }
        }
        public Matrix(List> m)
        {
            this.rows = m.Count;
            this.cols = m[0].Count;
            this.element = new double[Rows * Cols];
            for (int i = 0; i < rows; i++)
            {
                for (int j = 0; j < cols; j++)
                {
                    this[i, j] = m[i][j];
                }
            }
        }
        #region 特殊矩阵的生成
        /// 
        ///         生成一个指定阶的元素全为1的方阵
        /// 
        /// 
        /// 
        public static Matrix Ones(int dimension)
        {
            Matrix result = new Matrix();
            result.rows = dimension;
            result.cols = dimension;
            result.value = new double[dimension, dimension];
            result.element = new double[dimension * dimension];
            int count = 0;
            for (int i = 0; i < dimension; i++)
                for (int j = 0; j < dimension; j++)
                {
                    result.value[i, j] = 1;
                    result.element[count++] = 1 ;
                }
            return result;
        }
        /// 
        ///         生成一个指定行列的元素全为1的矩阵
        /// 
        /// 
        /// 
        /// 
        public static Matrix Ones(int row, int column)
        {
            Matrix result = new Matrix();
            result.rows = row;
            result.cols = column;
            result.value = new double[row, column];
            result.element = new double[row * column];
            int count = 0;
            for (int i = 0; i < row; i++)
                for (int j = 0; j < column; j++)
                {
                    result.value[i, j] = 1;
                    result.element[count++] = 1;
                }
            return result;
        }
        /// 
        ///         生成一个指定阶数的单位矩阵
        /// 
        /// 
        /// 
        public static Matrix Eye(int dimension)
        {
            Matrix result = new Matrix();
            result.rows = dimension;
            result.cols = dimension;
            result.value = new double[dimension, dimension];
            result.element = new double[dimension * dimension];
            int count = 0;
            for (int i = 0; i < dimension; i++)
                for (int j = 0; j < dimension; j++)
                {
                    if (i == j)
                    {
                        result.value[i, j] = 1;
                        result.element[count] = 1;
                    }

                    else
                    {
                        result.value[i, j] = 0;
                        result.element[count] = 0;
                    }
                    count++;
                }
            return result;
        }
        /// 
        ///         生成一个指定阶数的零矩阵
        /// 
        /// 
        /// 
        public static Matrix Zeros(int dimension)
        {
            Matrix result = new Matrix();
            result.rows = dimension;
            result.cols = dimension;
            result.value = new double[dimension, dimension];
            result.element = new double[dimension * dimension];
            int count = 0;
            for (int i = 0; i < dimension; i++)
                for (int j = 0; j < dimension; j++)
                {
                    result.value[i, j] = 0;
                    result.element[count++] = 0;
                }

            return result;
        }
        /// 
        ///         生成一个指定行列数的零矩阵
        /// 
        /// 
        /// 
        /// 
        public static Matrix Zeros(int row, int column)
        {
            Matrix result = new Matrix();
            result.rows = row;
            result.cols = column;
            result.value = new double[row, column];
            result.element = new double[row * column];
            int count = 0;
            for (int i = 0; i < row; i++)
                for (int j = 0; j < column; j++)
                {
                    result.value[i, j] = 0;
                    result.element[count++] = 0;
                }
            return result;
        }
        /// 
        ///         生成一个指定阶数的伪随机数矩阵
        /// 
        /// 
        /// 
        public static Matrix Random(int dimension)
        {
            Matrix result = new Matrix();
            result.rows = dimension;
            result.cols = dimension;
            result.value = new double[dimension, dimension];
            result.element = new double[dimension * dimension];
            int count = 0;
            for (int i = 0; i < dimension; i++)
                for (int j = 0; j < dimension; j++)
                {
                    result.value[i, j] = Matrix.GetRandomNum();
                    result.element[count++] = result.value[i, j];
                }
            return result;
        }
        /// 
        ///         生成一个指定行列数的伪随机数矩阵
        /// 
        /// 
        /// 
        /// 
        public static Matrix Random(int row, int column)
        {
            Matrix result = new Matrix();
            result.rows = row;
            result.cols = column;
            result.value = new double[row, column];
            result.element = new double[row * column];
            int count = 0;
            for (int i = 0; i < row; i++)
                for (int j = 0; j < column; j++)
                {
                    result.value[i, j] = Matrix.GetRandomNum();
                    result.element[count++] = result.value[i, j];
                }
            return result;
        }
        /// 
        ///         生成一个指定阶数和随机范围的伪随机数矩阵
        /// 
        /// 
        /// 伪随机数下限
        /// 伪随机数上限
        /// 
        public static Matrix Random(int dimension, double min, double max)
        {
            if (min > max)
            {
                min = max + min;
                max = min - max;
                min = min - max;
            }
            Matrix result = new Matrix();
            result.rows = dimension;
            result.cols = dimension;
            result.value = new double[dimension, dimension];
            result.element = new double[dimension * dimension];
            int count = 0;
            for (int i = 0; i < dimension; i++)
                for (int j = 0; j < dimension; j++)
                {
                    result.value[i, j] = Matrix.GetRandomNum() * (max - min) + min;
                    result.element[count++] = result.value[i, j];
                }
            return result;
        }
        /// 
        ///         生成一个指定行列数和伪随机数范围的矩阵
        /// 
        /// 
        /// 
        /// 伪随机数下限
        /// 伪随机数上限
        /// 
        public static Matrix Random(int row, int column, double min, double max)
        {
            if (min > max)
            {
                min = max + min;
                max = min - max;
                min = min - max;
            }
            Matrix result = new Matrix();
            result.rows = row;
            result.cols = column;
            result.value = new double[row, column];
            result.element = new double[row * column];
            int count = 0;
            for (int i = 0; i < row; i++)
                for (int j = 0; j < column; j++)
                {
                    result.value[i, j] = Matrix.GetRandomNum() * (max - min) + min;
                    result.element[count++] = result.value[i, j];
                }
            return result;
        }
        /// 
        ///         生成一个由指定数组元素填充对角线的对角矩阵
        /// 
        /// 
        /// 
        public static Matrix Diag(double[] diag)
        {
            Matrix result = Matrix.Zeros(diag.GetLength(0));
            for (int i = 0; i < result.rows; i++)
            {
                result.value[i, i] = diag[i];
                result.element[i * result.rows + i] = result.value[i, i];
            }
            return result;
        }
        #endregion
        #region 矩阵数学运算
        public static Matrix MAbs(Matrix a)
        {
            Matrix _thisCopy = a.DeepCopy();
            for (int i = 0; i < a.Rows; i++)
            {
                for (int j = 0; j < a.Cols; j++)
                {
                    _thisCopy[i, j] = Math.Abs(a[i, j]);
                }
            }
            return _thisCopy;
        }
        /// 
        /// 矩阵相加
        /// 
        /// 第一个矩阵,和b矩阵必须同等大小
        /// 第二个矩阵
        /// 返回矩阵相加后的结果
        public static Matrix operator +(Matrix a, Matrix b)
        {
            if (a.cols == b.cols && a.rows == b.rows)
            {
                double[,] res = new double[a.rows, a.cols];
                for (int i = 0; i < a.Rows; i++)
                {
                    for (int j = 0; j < a.Cols; j++)
                    {
                        res[i, j] = a[i, j] + b[i, j];
                    }
                }
                return new Matrix(res);
            }
            else
            {
                throw new Exception("两个矩阵行列不相等");
            }
        }
        /// 
        /// 矩阵相减
        /// 
        /// 第一个矩阵,和b矩阵必须同等大小
        /// 第二个矩阵
        /// 返回矩阵相减后的结果
        public static Matrix operator -(Matrix a, Matrix b)
        {
            if (a.cols == b.cols && a.rows == b.rows)
            {
                double[,] res = new double[a.rows, a.cols];
                for (int i = 0; i < a.Rows; i++)
                {
                    for (int j = 0; j < a.Cols; j++)
                    {
                        res[i, j] = a[i, j] - b[i, j];
                    }
                }
                return new Matrix(res);
            }
            else
            {
                throw new Exception("两个矩阵行列不相等");
            }
        }
        /// 
        /// 对矩阵每个元素取相反数
        /// 
        /// 二维矩阵
        /// 得到矩阵的相反数
        public static Matrix operator -(Matrix a)
        {
            Matrix res = a;
            for (int i = 0; i < a.rows; i++)
            {
                for (int j = 0; j < a.cols; j++)
                {
                    res.element[i * a.cols + j] = -res.element[i * a.cols + j];
                }
            }
            return res;
        }
        /// 
        /// 矩阵相乘
        /// 
        /// 第一个矩阵
        /// 第二个矩阵,这个矩阵的行要与第一个矩阵的列相等
        /// 返回相乘后的一个新的矩阵
        public static Matrix operator *(Matrix a, Matrix b)
        {
            if (a.cols == b.rows)
            {
                double[,] res = new double[a.rows, b.cols];
                for (int i = 0; i < a.rows; i++)
                {
                    for (int j = 0; j < b.cols; j++)
                    {
                        for (int k = 0; k < a.cols; k++)
                        {
                            res[i, j] += a[i, k] * b[k, j];
                        }
                    }
                }
                return new Matrix(res);
            }
            else
            {
                throw new Exception("两个矩阵行和列不等");
            }
        }
        /// 
        /// 矩阵与数相乘
        /// 
        /// 第一个矩阵
        /// 一个实数
        /// 返回相乘后的新的矩阵
        public static Matrix operator *(Matrix a, double num)
        {
            Matrix res = a;
            for (int i = 0; i < a.rows; i++)
            {
                for (int j = 0; j < a.cols; j++)
                {
                    res.element[i * a.cols + j] *= num;
                }
            }
            return res;
        }
        /// 
        /// 矩阵转置
        /// 
        /// 返回当前矩阵转置后的新矩阵
        public Matrix T()
        {
            double[,] res = new double[cols, rows];
            {
                for (int i = 0; i < cols; i++)
                {
                    for (int j = 0; j < rows; j++)
                    {
                        res[i, j] = this[j, i];
                    }
                }
            }
            return new Matrix(res);
        }
        /// 
        /// 矩阵求逆
        /// 
        /// 返回求逆后的新的矩阵
        public Matrix I()
        {
            //最后原始矩阵并不变,所以需要深拷贝一份
            Matrix _thisCopy = this.DeepCopy();
            if (cols == rows && this.Determinant() != 0)
            {
                //初始化一个同等大小的单位阵
                Matrix res = _thisCopy.EMatrix();
                for (int i = 0; i < rows; i++)
                {
                    //首先找到第i列的绝对值最大的数,并将该行和第i行互换
                    int rowMax = i;
                    double max = Math.Abs(_thisCopy[i, i]);
                    for (int j = i; j < rows; j++)
                    {
                        if (Math.Abs(_thisCopy[j, i]) > max)
                        {
                            rowMax = j;
                            max = Math.Abs(_thisCopy[j, i]);
                        }
                    }
                    //将第i行和找到最大数那一行rowMax交换
                    if (rowMax != i)
                    {
                        _thisCopy.Exchange(i, rowMax);
                        res.Exchange(i, rowMax);

                    }
                    //将第i行做初等行变换,将第一个非0元素化为1
                    double r = 1.0 / _thisCopy[i, i];
                    _thisCopy.Exchange(i, -1, r);
                    res.Exchange(i, -1, r);
                    //消元
                    for (int j = 0; j < rows; j++)
                    {
                        //到本行后跳过
                        if (j == i)
                            continue;
                        else
                        {
                            r = -_thisCopy[j, i];
                            _thisCopy.Exchange(i, j, r);
                            res.Exchange(i, j, r);
                        }
                    }
                }
                return res;
            }
            else
            {
                throw new Exception("矩阵不是方阵无法求逆");
            }
        }
        #region 重载比较运算符
        public static bool operator <(Matrix a, Matrix b)
        {
            bool issmall = true;
            for (int i = 0; i < a.Rows; i++)
            {
                for (int j = 0; j < a.Cols; j++)
                {
                    if (a[i, j] >= b[i, j]) issmall = false;
                }
            }
            return issmall;
        }
        public static bool operator >(Matrix a, Matrix b)
        {
            bool issmall = true;
            for (int i = 0; i < a.Rows; i++)
            {
                for (int j = 0; j < a.Cols; j++)
                {
                    if (a[i, j] <= b[i, j]) issmall = false;
                }
            }
            return issmall;
        }
        public static bool operator <=(Matrix a, Matrix b)
        {
            bool issmall = true;
            for (int i = 0; i < a.Rows; i++)
            {
                for (int j = 0; j < a.Cols; j++)
                {
                    if (a[i, j] > b[i, j]) issmall = false;
                }
            }
            return issmall;
        }
        public static bool operator >=(Matrix a, Matrix b)
        {
            bool issmall = true;
            for (int i = 0; i < a.Rows; i++)
            {
                for (int j = 0; j < a.Cols; j++)
                {
                    if (a[i, j] < b[i, j]) issmall = false;
                }
            }
            return issmall;
        }
        public static bool operator !=(Matrix a, Matrix b)
        {
            bool issmall = true;
            issmall = ReferenceEquals(a, b);
            if (issmall) return issmall;
            for (int i = 0; i < a.Rows; i++)
            {
                for (int j = 0; j < a.Cols; j++)
                {
                    if (a[i, j] == b[i, j]) issmall = false;
                }
            }
            return issmall;
        }
        public static bool operator ==(Matrix a, Matrix b)
        {
            bool issmall = true;
            issmall = ReferenceEquals(a, b);
            if (issmall) return issmall;
            for (int i = 0; i < a.Rows; i++)
            {
                for (int j = 0; j < a.Cols; j++)
                {
                    if (a[i, j] != b[i, j]) issmall = false;
                }
            }
            return issmall;
        }
        public override bool Equals(object obj)
        {
            Matrix b = obj as Matrix;
            return this == b;
        }
        public override int GetHashCode()
        {
            return base.GetHashCode();
        }
        #endregion
        public double Determinant()
        {
            if (cols == rows)
            {
                Matrix _thisCopy = this.DeepCopy();
                //行列式每次交换行,都需要乘以-1
                double res = 1;
                for (int i = 0; i < rows; i++)
                {
                    //首先找到第i列的绝对值最大的数
                    int rowMax = i;
                    double max = Math.Abs(_thisCopy[i, i]);
                    for (int j = i; j < rows; j++)
                    {
                        if (Math.Abs(_thisCopy[j, i]) > max)
                        {
                            rowMax = j;
                            max = Math.Abs(_thisCopy[j, i]);
                        }
                    }
                    //将第i行和找到最大数那一行rowMax交换,同时将单位阵做相同初等变换
                    if (rowMax != i)
                    {
                        _thisCopy.Exchange(i, rowMax);
                        res *= -1;
                    }
                    //消元
                    for (int j = i + 1; j < rows; j++)
                    {
                        double r = -_thisCopy[j, i] / _thisCopy[i, i];
                        _thisCopy.Exchange(i, j, r);
                    }
                }
                //计算对角线乘积
                for (int i = 0; i < rows; i++)
                {
                    res *= _thisCopy[i, i];
                }
                return res;
            }
            else
            {
                throw new Exception("不是行列式");
            }
        }
        #endregion
        #region 初等变换
        /// 
        /// 初等变换:交换第r1和第r2行
        /// 
        /// 第r1行
        /// 第r2行
        /// 返回交换两行后的新的矩阵
        public Matrix Exchange(int r1, int r2)
        {
            if (Math.Min(r2, r1) >= 0 && Math.Max(r1, r2) < rows)
            {
                for (int j = 0; j < cols; j++)
                {
                    double temp = this[r1, j];
                    this[r1, j] = this[r2, j];
                    this[r2, j] = temp;
                }
                return this;
            }
            else
            {
                throw new Exception("超出索引");
            }
        }
        /// 
        /// 初等变换:将r1行乘以某个数加到r2行
        /// 
        /// 第r1行乘以num
        /// 加到第r2行,若第r2行为负,则直接将r1乘以num并返回
        /// 某行放大的倍数
        /// 
        public Matrix Exchange(int r1, int r2, double num)
        {
            if (Math.Min(r2, r1) >= 0 && Math.Max(r1, r2) < rows)
            {
                for (int j = 0; j < cols; j++)
                {
                    this[r2, j] += this[r1, j] * num;
                }
                return this;
            }
            else if (r2 < 0)
            {
                for (int j = 0; j < cols; j++)
                {
                    this[r1, j] *= num;
                }
                return this;
            }
            else
            {
                throw new Exception("超出索引");
            }
        }
        /// 
        /// 得到一个同等大小的单位矩阵
        /// 
        /// 返回一个同等大小的单位矩阵
        public Matrix EMatrix()
        {
            if (rows == cols)
            {
                double[,] res = new double[rows, cols];
                for (int i = 0; i < rows; i++)
                {
                    for (int j = 0; j < cols; j++)
                    {
                        if (i == j)
                            res[i, j] = 1;
                        else
                            res[i, j] = 0;
                    }
                }
                return new Matrix(res);
            }
            else
                throw new Exception("不是方阵,无法得到单位矩阵");
        }
        #endregion
        /// 
        /// 深拷贝,仅仅将值拷贝给一个新的对象
        /// 
        /// 返回深拷贝后的新对象
        public Matrix DeepCopy()
        {
            double[,] ele = new double[rows, cols];
            for (int i = 0; i < rows; i++)
            {
                for (int j = 0; j < cols; j++)
                {
                    ele[i, j] = this[i, j];
                }
            }
            return new Matrix(ele);
        }
        /// 
        ///         返回一个伪随机数
        /// 
        /// 
        public static double GetRandomNum()
        {
            Random ran = new Random(Guid.NewGuid().GetHashCode());
            return ran.NextDouble();
        }

        public override string ToString()
        {
            string str = "";
            for (int i = 0; i < Rows; i++)
            {
                for (int j = 0; j < Cols; j++)
                {
                    str += this[i, j].ToString();
                    if (j != Cols - 1)
                        str += " ";
                    else if (i != Rows - 1)
                        str += Environment.NewLine;
                }
            }
            return str;
        }
    }
}

四.小结

这个矩阵类是根据我个人的习惯进行编写的,我平时比较喜欢用Python编写矩阵,所以在一些函数的命名上和Python基本相同,这个矩阵类目前还有许多地方可以进行改进,比如element这个成员变量如何进行优化,还有传数组是以地址形式,相对比较不安全,以及本矩阵类在一些功能上还不完整,比如求行列式还没有写,希望大家可以互相讨论,有需要的可以根据自己的情况在这个基础上进行改进。

 

 

 

你可能感兴趣的:(矩阵,C#)